Xjw01 инструкция по применению на русском

Доброго всем дня!
В этой статейке я разскажу, как я попытался впихнуть в корпус и приделать аккумуляторное питание RLC метру-конструктору XJW01, и что из этого получилось. Заодно, будем делать печатную плату :)

В один прекрасный момент, здесь на сайте появился прекрасный обзор от Kirich на замечательный RLC метр. Я понял, что тоже хочу такой конструктор.
Прибор был куплен на ТаоБао, но уже давно — доступен и на али, по названию XJW-01.
Про сам прибор разсказывать не буду, все прекрасно описано в обзоре по ссылке выше.
В очень скором времени, Kirich довел свой прибор до ума. У меня — руки дошли только месяц назад :)

Я предпочитаю корпуса польского производства Kradex. Для даной конструкции — я приобрел в местном магазине корпус Z2P, шириной 150, высотой 70 и глубиной 180 мм.
Питание — тоже решил сделать от аккумулятора, заодно придумал зарядное устройство и индикацию разряда.
Родной дисплей — тоже решил заменить на VATN. Удовольствие — не дешевое, но для себя — того стоит.

Корпус компактный, плата по длине не влезала, пришлось обрезать штатные BNC разьемы.

На самой плате — уже были отверстия для измерительных входов, вот только земли к ним — китайцы почему — то не подвели. Поэтому пришлось чуть счистить маску и поиздеваться над выводами угловых пап XH2.54

На родных стойках и над куском фольгированого текстолита, толщиной 0,1мм — плата заняла свое место в корпусе.

Сверху — экранирующее накрытие из такого же текстолита.

Теперь — питание.
Когда — то коллега подарила мне повер-банк. Дети выломали разьем для зарядки, и она купила новый. Вскрытие показало, что девайс содержит 3 включенные параллельно баночки, а тест на LiitoKala — чуть больше 4 А/ч на каждой. Сам повер-банк не умеет QC, так что без сожаления — пущен на

органы

батарейки.

Батареи были включены последовательно, к ним — добавлена плата защиты на 3S и простенький активный балансир на микросхемах 7660

Вся конструкция — укладена между двумя листами стеклотекстолита.

Проволока, хоть и выглядит сурово, но не сжимает конструкцию, на лишь удерживает все вместе. Батарейки приклеены на двусторонний скотч.
На металлически стойках, (есть и на Али) — аккумуляторный бутерброд — займет свое место выше платы.

Пришла очередь передней панели.
Корпус компактный, плата дисплея встает в нем на всю высоту. Разьем для щупов, GX-16, размещается рядом, в притык.
Все — подгонялось до миллиметра, вручную. Сперва — я вырезал отверстие под дисплей. Про предполагаемому контуру — насверлил отверстия и выломал кусок.

Далее — точно подогнал канцелярским ножом, пластик — очень легко режется.
Сверху и снизу от дисплея — остается много свободного места. Там — разместились планочки со светодиодами и кнопками управления.

Кнопки расположены очень близко, это плата за компактность, но пользоваться ими — вполне удобно.
В Corel draw нарисовал и распечатал переднюю панель. Канцелярским ножом вырезал отверстия индикатора, светодиодов, тумблера питания и разъема.

Потом прогнал это через ламинатор, вырезал отверстия под кнопки, разъем и тумблер и собрал все в кучу.
Вот так выглядит передняя панель уже в корпусе

Теперь — зарядное устройство и индикация разряда. схема этого дела — выглядит так:

Зарядное хотелось сделать всеядным, поэтому — только Sepic. Сначала пробовал зделать на MT3608, Kirich уже проводил над ней такие опыты, но чего то эта тема у меня не работала нормально.
После двух убитых МТ-шек — я решил прекратить эксперименты и купил по месту готовый Sepic на основе XL6019, вот такой же, и настроил его на 12,6 вольт. Преобразователь свободно отдает нужные 0,5 А при входном от 5 до 24 вольт.
Осталось только ограничивать ток. За это отвечает усилитель ОР1. Он сравнивает опорные 25мВ с напряжением с шунта R16. И когда ток превышает (0,025В / 0,05Ом) = 0,5А — притормажывает преобразователь, через VD1 и R2 — напряжение поступает на 5-ю ногу микросхемы преобразователя. Узел на ОР2 — выключает желтый светодиод и перестает шунтировать зеленый, когда зарядный ток падает менее 0,1 от ограничения (50 мА).
Транзистор Т1 — предотвращает разряд аккумулятора через цепи контроля тока и не мешает заряду, так как падение напряжения на нем — мизерное.
Узел на ОР3 — зажигает желтый светодиод, когда нпряжение падает ниже 11,1 вольт (3,7 на банку, 30%). А ОР4 — красный, когда ниже 10,5 вольт (3,5 на банку, 10%).
Вот так выглядит эта плата:

Сама плата нарисована в программе Sprint layout и распечатана на прозрачной пленке для лазерного принтера, в режиме негатив.
Далее — нужна заготовка из фольгированого стеклотекстолита. Ее нужно почистить «нулевкой» и хорошо обезжирить. Я использую фейри. Аромат — не важен :)

Потом — нужен кусочек пленочного фоторезиста. Скоблим его уголок ножом и отделяем пленку с ВНУТРЕННЕЙ стороны рулона.


Прикладываем фоторезист липкой стороной к фольге. Делать это — легче под водой, ее проще выдавить чем пузырьки воздуха. Полученную заготовку вкладываем между слоями бумаги и прогоняем через холодный ламинатор, чтобы полностью убрать воду.

Теперь греем ламинатор, и прокатываем заготовку, так же между листами бумаги, еще 2-3 раза.
Дальше — проявление. Укладываем фотошаблон на источник ультрафиолета, сферху — нашу заготовку.

У меня — девайс из старого сканнера. 4 лампы по 8 Ватт и таймер. Время просвечивания — минута и 40 секунд.
Должно получится вот так:

Теперь, на чашку воды бросаем 0,5 ч.л. каустической соды, с заготовки снимаем верхнюю пленку и бросаем ее в раствор.

Секунд через 10 начинаем водить по плате старой зубной щеткой. аккуратно, без излишнего усилия. Заканчиваем промывку СРАЗУ ЖЕ, как смоется весь незасвеченый фоторезист, иначе можно смыть то, что не нужно :)
Готовим раствор для травления: 4 ч.л. с верхом лимонной кислоты, 1 ч.л. с верхом кухонной соли и 200 мЛ перекиси водорода.

Минут через 20-30 получается такая красота

Готовим раствор из кружки воды и 3-4 ч.л. каустической соды, кладем туда вытравленную плату, что бы облез фоторезист. получится такое:

Лудим плату, я предпочитаю классический способ, намазать фольгу флюсом и поводить паяльником, и паяем компоненты.

Готовая плата — занимает свое место на самом верху этажерки

Для подключений — использованы как обжатые «мамы», так и нет.
Очень рекомендую вот такой кримпер.

Устройство — готово к использованию:

Потребляет аппарат около 200мА, так что аккумуляторов хватит очень на долго :)

UPD: в комментариях было несколько вопросов по поводу дисплея.
Я купил его в украинском магазине. Белого сейчас нету в наличии, но можно выбрать другой цвет.
Просто так поменять дисплей нельзя. Kirich уже описал все ньюансы в своем обзоре.
Попробую чуть углубиться в эту тему. Давайте, глянем схему:

Рисуночек слева — это так организовано подключение питания, установки контраста и подсветки в приборе.
По середине — самый обычный стандартный LCD и как регулировать ему контраст. Перемычки J1, J2, J3 могут отсутствовать, а могут и быть замкнуты дорожкой или каплей припоя. К слову, в комплектном дисплее — они отсутствуют. Если Вы установите в девайс свой дисплей, убедитесь в отсутствии перемычек подсветки, иначе Вы замкнете накоротко источник отрицательного напряжения. Кроме того, скорее всего, нужно будет добавить резистор, что бы вытянуть контрастность.
Справа — VATN дисплей. Если Вы просто установите его вместо стандартного, к подсветке будет приложено 10вольт. Кроме того, для регулировки контраста необходимо -5 вольт. Источник отрицательного напряжения — уже есть в дисплее. На рисунке показано, как нужно подключать регулятор контраста.
А теперь — вернемся к моему прибору.

Как видно, к родной плате я подключил только питание, 3 линии команд и 4 линии данных.
Для работы подсветки, прямо на дисплее установлена перемычка между 1-м и 16-м выводами.
На самом же дисплее есть площадки под переменный резистор, к ним сходятся линии от выводов 2, 3 и 15. Я просто впаял туда подстроечный резистор и все заработало сразу же.

$ 31.29 (без учета доставки)

Я уже довольно длительное время пользуюсь самодельным измерителем емкости и ESR конденсаторов, собранного по схеме от автора GO с форума ProRadio. Попутно в моем использовании есть и другой, не менее популярный измеритель FCL с сайта cqham.
Сегодня в обзоре прибор, который имеет выше заявленную точность, а также фактически объединяющий оба указанных выше прибора.
Внимание, много фото, мало текста, может быть критично для пользователей с дорогим трафиком.

Стоит наверное начать с того, что данный прибор продается и в полном, т.е. уже собранном виде. Но в данном случае конструктор был выбран целенаправленно, так как это как минимум позволяет немного сэкономить средства, а как максимум, просто получить удовольствие от сборки. Причем наверное второе важнее.
Вообще я давно хотел сменить предыдущую модель C-ESR метра. В принципе он работает, но после как минимум одного ремонта стал вести себя не совсем адекватно при измерении ESR. А так как я много работаю с импульсными блоками питания (хотя это и для обычных актуально), то этот параметр для меня даже более важен, чем просто емкость.
Но в данном случае мы имеем дело не с просто измерителем C-ESR, а с прибором, который измеряет ESR + LCR, а полный список измеряемых величин выглядит еще больше, кроме того заявлена еще и неплохая точность.

Индуктивность 0,01 uH — 2000H (10 uH)
Ёмкость 200pF — 200 мФ (10pF) Разрешение 0,01pF
Сопротивление 2000мОм- 20MОм (1.5 Ом) Разрешение 0,1 мОм
Точность 0,3 – 0,5 %
Частота тестового сигнала 100 Гц, 1 кГц, 7,831 кГц
Тестовое напряжение 200 мВ
Функция калибровки автоматическая
Выходное сопротивление 40 Ом

Прибор умеет измерять —
Q — Добротность
D — Коэффициент потерь
Θ — Угол сдвига фаз
Rp — Эквивалентное параллельное сопротивление
ESR — Эквивалентное последовательное сопротивление
Xp — Эквивалентная параллельная емкость
Xs — Эквивалентная последовательная емкость
Cp — Параллельная емкость
Cs — Последовательная емкость
Lp — Параллельная индуктивность
Ls — Последовательная индуктивность

При этом измерение проводится мостовым методом при помощи четырехпроводного подключения компонента.

На мой взгляд ближайшим конкурентом является Е7-22, но он имеет меньше заявленную точность измерения (0.5-0.8%), тестовую частоту только 120 Гц и 1 кГц и тестовое напряжение 0.5 Вольта против 0.3%, 120 Гц — 1 кГц — 7.8 кГц, 0.2 Вольта у обозреваемого.

Продается данное устройство в нескольких вариантах комплектации, в обзоре использован почти самый полный вариант. Цены со страницы продавца.
1. Только сам прибор без корпуса — $21.43
2. Прибор + один вид щупов — $25.97
3. Прибор + второй вид щупов — $26.75
4. Прибор + два вида щупов — $31.29
5. Корпус к прибору. — $9.70

Упаковано все было в кучу маленьких пакетов.

Так как при доставке через посредника обычно учитывается вес посылки, то я дополнительно решил взвесить, без кабелей вышло 333 грамма, с кабелями заметно больше, 595 грамм.
В общем-то вполне можно покупать и без кабелей, особенно если есть из чего их сделать самому, так как разница только в цене комплекта выходит около 10 долларов, не считая веса.

Вот кстати с кабелей я и начну.
Упакованы в отдельные пакеты, даже просто по ощущениям вес приличный.

Первый комплект представляет из себя по сути обычные «крокодилы», но побольше размером и в пластмассе. Но на самом деле не все так просто, губки подключены к разным проводам (разъемам) чтобы реализовать корректное четырехпроводное подключения.
Кабель в меру гибкий, жесткость скорее добавляет то, что кабелей четыре, при этом они экранированные. К самому прибору щупы подключаются при помощи обычных BNC разъемов, экран подключен только на стороне BNC разъема.

Нареканий к качеству нет, единственно что не очень понравилось, отсутствие цветной маркировки около разъемов, так как сами крокодилы её имеют. В итоге для подключения надо каждый раз смотреть, какой куда подключаем. Решение — сделать метку изолентой около разъемов.

А вот второй комплект куда интереснее, он позволяет работать с мелкими компонентами, так как представляет собой пинцет.
На фото видно, что центральные жилы проводов соединяются не у концов пинцета, а на некотором расстоянии, т.е. такой вариант чуть хуже предыдущего, но и реализовать систему как у «крокодилов» здесь сложнее. Цветовой маркировки нет.
Для удобства пользования пинцет имеет направляющую, защищающую губки от сдвига друг относительно друга. Не знаю насколько долго они прослужат, но пока пользоваться довольно удобно, хотя есть и замечание — сжимать надо ближе к самим губкам, если сжимать пинцет около середины корпуса, то губки могут не сходиться полностью.

Буквально пару слов о том, что вообще такое — четырехпроводное подключение или подключение методом Кельвина. Картинки взяты отсюда, текст мой :)

При привычном нам измерении сопротивления (кстати не только сопротивления) может довольно сильно влиять такая паразитная вещь, как провода к щупам. Думаю многие знают, что редко какой мультиметр при замкнутых щупах и нижнем пределе измерения покажет 0. На индикаторе обычно при этом отображается некое значение примерно 0.05-0.5 Ома, это и есть паразитное сопротивление.
Иногда его можно компенсировать путем включения функции относительных измерений(Rel), но это не всегда удобно и далеко не всегда корректно.

Сам принцип измерения сопротивления довольно прост. Подключаем компонент к источнику тока и измеряем напряжение на компоненте. Но так как у нас есть сопротивление проводов, то получим в итоге сумму, состоящею из реального сопротивления компонента и сопротивления провода.
Если сопротивление большое, то обычно это особой роли не играет, а вот если речь идет о величинах в 1-10 Ом и меньше, то проблема вылазит в полный рост.
Для решения этой проблемы разделяют цепи, по которым идет ток через компонент и цепи непосредственно измерения.

В реальной жизни это выглядит примерно так, как показано на схеме.

Кроме того, подобный способ используется к примеру и в блоках питания. Например фото из моего обзора мощного преобразователя. Здесь также можно разделить силовую цепь и цепь обратной связи, тогда падение напряжения на проводах не будет сказываться на напряжении на нагрузке.
Еще вы подобное наверняка видели в компьютерных блоках питания по цепи 3.3 Вольта (оранжевые провода). только там использована трехпроводная схема (тот самый добавочный тонкий провод к силовому разъему)

Блок питания 12 Вольт 1 Ампер, внешне неплохой. Впрочем я пробовал подключать его и просто к нагрузке, работает нормально.
Но из-за вилки с плоскими штырями использовать его неудобно, заменю на что-то другое, благо напряжение стандартное.
Реально прибор может питаться напряжением 9-15 Вольт.
Жаль, что нельзя выбрать комплектацию без БП, думаю такой БП найдется дома у многих радиолюбителей.

Основная часть комплекта была разбита на три отдельных пакета.

В одном из них самый обычный дисплей 2004 (20 символов, 4 строки) с подсветкой.

Плата прибора была тщательно обернута «воздушной» пленкой.

Здесь как раз тот случай, когда на фото в магазине плата кажется меньше, чем есть на самом деле :)
Реальные размеры 100х138мм.

Переднюю часть платы занимает место для разъемов подключения щупов.

Средняя часть — измерительный узел, переключатели, операционные усилители. Видимо предполагалась экранировка данного узла, но самого экрана в комплекте нет.

В верхней части «мозги» и питание.

В первых версиях прибора использовались линейные стабилизаторы питания, в данной версии они заменены на импульсные.
Также виден разъем для подключения блока питания и выключатель.
Замена стабилизаторов на импульсные может заметно помочь при питании от аккумуляторов. Например в комплекте к алюминиевому корпусу идет кассета на 3 аккумулятора 18650.

Управляет всем микроконтроллер 12C5A60S2. Базируется он на стареьком 8051 ядре и имеет на борту восьмиканальный 10 бит АЦП. В первых версиях прибора он был в DIP-40 корпусе, в новых версиях заменен на SMD вариант.

Также на плате имеется разъем для подключения к программатору.

Несколько отдельных фото установленных компонентов.

Снизу пусто, сюда выведены только точки пайки экрана и контрольные точки выходов стабилизаторов и преобразователей питания.

Ну и последний пакетик, с радиодеталями, которые собственно надо будет еще установить на плату.

Сюда входит плата клавиатуры, а также всякие резисторы, конденсаторы, разъемы и т.д.
Вообще конструкция довольно продумана, мелкие компоненты уже распаяны на плате, установить и запаять надо только более габаритные. Т.е. сохранен элемент «рукоприкладства», но при этом нет мазохизма для начинающих радиолюбителей в плане пайки мелких компонентов, да и «накосячить» куда сложнее. В итоге можно довольно быстро собрать устройство и получить при этом положительные впечатления от процесса.

Компоненты разложены по пакетикам, но в основном по нескольку номиналов в одном пакете.

Все резисторы, которые входят в комплект, прецизионные. На начальном этапе я на всякий случай измерил их реальное сопротивление.
В сборке помогает то, что номиналов немного, но при этом они еще и легко измеряются даже дешевым тестером, так как нет резисторов слишком близких друг к другу по номиналу.
Вверху то, что надо паять, номиналов по сути всего шесть — 40 Ом, 1, 2, 10, 16 и 100 кОм.

Вверху резисторы из подписанного пакета, они на плату не запаиваются, а используются для проверки и калибровки прибора. Сначала я думал что их надо запаивать в какие-то ответственные места, собственно потому и измерил сопротивление. Но потом выяснилось, что они «лишние», а количество (16 штук) устанавливаемых резисторов совпадает с количеством, которые были в первом пакете.

В комплект входят конденсаторы с номиналами — 3.3, 10, 22, 47 нФ, 0.1, 0.2 и 0.47мкФ.
Ниже на фото я обозначил конденсаторы так, как они обозначены на плате.

Кроме того дополнительно устанавливаются разъемы, пара электролитических конденсаторов, реле и пищалка.

Пока ждал свою посылку, поискал в интернете расширенную информацию о приборе. Выяснилось что есть не только схема, а и разные версии печатной платы, прошивки, да и вообще довольно много людей занимается данной моделью.
Схема конечно довольно условна, но общее понимание вполне дает.

Но попутно вспомнил, что примерно 8-9 лет назад, в моем же городе человек разрабатывал подобное устройство. Если посмотреть на схему, то можно увидеть много общего, причем разработан он был до обозреваемого.

Очень поднял настроение комментарий продавца на странице товара, сорри за гуглоперевод.
В простом виде (ну очень утрированно) он означает — платы все я проверяю, высылаю в отличном виде, потому не надо мне присылать ваши поделки, паяные горячим гвоздем на коленке с ортофосфоркой вместо флюса.
Любите вашу плату и относитесь к ней как к любимой подруге :)

Стоит отметить, что как качество изготовления платы, так и пайка компонентов на 5 баллов. Все не только аккуратно припаяно, но и тщательно промыто!
При этом все установочные места промаркированы и имеют как позиционное обозначение, так и указание номинала компонента. Вот честно, 5 баллов.

Видео распаковки и описания комплекта.

Переходим к сборке. Вообще я когда раскрыл все эти пакеты и разложил на столе, то реально хотелось сразу сесть и спаять эту конструкцию, остановило только то, что было решено сделать некую небольшую инструкцию для сборки, если вдруг это решит делать кто-то из начинающих.
Первым делом высыпаем на стол резисторы и находим те, которых больше всего, это номиналы 2 и 10 кОм.

Устанавливаем и запаиваем сначала их. Это позволит быстро убрать с платы большую часть свободных мест и облегчит потом поиск оставшихся.

Я прекрасно понимаю, что моя инструкция совсем для начинающих, потому остальную часть сборки спрячу под спойлер.

После сборки мы получаем довольно красивую печатную плату, главное ничего не напутать в процессе :)

Выводы резисторов я формовал при помощи небольшого приспособления, но оказалось, что расстояние между выводами получается немного больше, чем надо. В итоге я решил резисторы немного приподнять над платой, но скорее для красоты, по крайней мере мне так больше нравится.

После пайки обязательно промываем плату, так как флюса было мало, то я обошелся спиртом.

Уже после сборки обратил внимание, что плату можно немного укоротить от базовых 138мм. Примерно до 123-124мм если оставить разъем программирования или до 114мм если его тоже вырезать. Разъемы подключения щупов в таком случае подключаются проводами в специально предназначенные отверстия. Возможно будет полезно при «упаковке» в маленький корпус.

На плате клавиатуры расположены только кнопки, причем случайно дали не 8, а 9 кнопок. Одна кнопка «слиплась» с другой.

Зато не положили в комплекте одну «гребенку», пришлось немного распотрошить «загашник», заодно достал и ответные части.
Правда в моем случае были только угловые разъемы, зато много :)
Вообще полезно иметь в хозяйстве набор таких разъемов, бывает частенько выручают.

Припаиваем разъемы к плате клавиатуры и индикатору. Кстати, подключение клавиатуры реализовано полноценно, т.е. каждой кнопке свой вывод процессора, а не использование резисторов и АЦП, как это иногда бывает.

Вот и все, комплект полностью готов.

В собранном виде компоновка напоминает мультиметр, сверху индикатор, ниже кнопки, а еще ниже разъемы.

Как можно понять из того, что я писал выше, это вторая версия прибора, по сути доработанная. Но вот вариант корпуса мне больше нравится именно у предыдущей версии и в планах делать именно такой вариант корпуса. Правда стоит такой корпус порядка 9-10 долларов, а если покупать с платой клавиатуры и передней панелью, то еще больше. Кстати у меня уже был обзор такого корпуса, где я собирал в нем регулируемый блок питания.

Мой же вариант рассчитан под установки в алюминиевый корпус.

И по задумке должен выглядеть как на этом фото. Но скажем так, дизайн это больше индивидуальное, в интернете мне попадались различные варианты.

После сборки у меня остались тестовые резисторы, кнопка и немного крепежа. Ну и блок питания со щупами конечно.

Теперь переходим к описанию возможностей прибора и специфики его работы.
При включении приветственная надпись, затем базовый рабочий экран. К слову, все заработало сразу, в приборе вообще нет никаких подстроечных элементов, собрал — включил — пользуйся.

Прибор умеет работать в четырех основных режимах:
1. Автоматический выбор. Здесь прибор сам определяет что измерять. Выбор производится по преобладающей величине. Т.е. если у компонента преобладает емкостная составляющая, то перейдет в режим измерения емкости, если индуктивная, то в режим измерения индуктивности. Иногда может ошибаться, особенно если компонент имеет несколько выраженных составляющих, например некоторые резисторы могут быть определены как индуктивность.
В помощь автоматике добавили ручной выбор —
2. Измерение емкости
3. Индуктивности
4. Сопротивления.

Также на индикатор выводится частота тестового сигнала и предел измерения. Пределы измерения несколько «нестандартны» и насчитывают аж 16 штук — 1.5, 4.5, 13, 40, 120, 360 Ом. 1, 3, 9, 10, 30, 90, 100, 300, 900 кОм и 2.7 МОм.

По умолчанию прибор стартует в автоматическом режиме измерения на частоте 1кГц.

Немного об управлении.
Под индикатором расположены восемь кнопок, он подписаны.
M — Меню, отсюда производят необходимые калибровки и сброс настроек на заводские.
RNG — Диапазон. В меню эта кнопка дает доступ к подменю калибровок.
С — Быстрая автоматическая калибровка.
L — Переключение режима индикации (первое фото). В меню — память
X — Переключение режимов работы прибора. В режиме меню — выход.
R — Уменьшение значения в режиме калибровки (X- увеличение)
Q — режим относительных измерений. Можно использовать для подбора двух одинаковых компонентов. подключаем образцовый компонент, нажимаем на кнопку, отключаем образцовый и подключаем подбираемые. На экране будет отображен процент расхождения (второе фото).
F — Выбор частоты 100 Гц — 1 кГц — 7.8 кГц.

Вид меню прибора.

Режим быстрой калибровки по нажатию кнопки С имеет два варианта:
1. При измерении емкости и индуктивности производится с разомкнутыми щупами.
2. При измерении сопротивления — с замкнутыми. В обоих вариантах прибор самокалибруется три раза по каждой из частот.
3, 4. Калибровка в режиме сопротивления, видно сопротивление щупов до калибровки и после.

В режиме измерения малых сопротивлений калибровка имеет довольно большое значение, так как возможности прибора позволяют даже «увидеть» сопротивление выводов конденсатора, не говоря о разных проводах.

Естественно в этом режиме удобно измерять сопротивление низкоомных резисторов, а также такие «нестандартные» измерения как — сопротивление контактов кнопок, реле или разъемов.

В плане точности измерения сопротивления прибор вполне может соперничать с моим Unit 181.

При измерении индуктивности прибор также вел себя довольно неплохо. На фото индуктивность 22мкГн и три теста с разными частотами индуктивности с номиналом 150мкГн.

Вот теперь можно перейти к главному, собственно для чего в основном он мне нужен, измерению параметров конденсаторов.

Поначалу я просто тыкал разные конденсаторы и смотрел что показывает, но один (а точнее пара) меня удивил.
Я промерил пару одинаковых конденсаторов, которые были выпаяны из старой (около 20 лет) Венгерской или Чехословацкой аппаратуры. Один показал 488мкФ, а второй почти 600. Все бы ничего, но изначально это конденсаторы 470мкФ 40 Вольт.
Причем они по разному себя ведут на частоте 7.8 кГц. Вернее разница в емкости не пропорциональна друг с другом.

Затем я взял еще один конденсатор (вроде Матсушита), купленный давно, но так и лежащий в загашнике.
Прибор смог нормально измерить емкость на частоте 100 Гц и 1 кГц, но на высокой частоте емкость отобразил несколько некорректно. Вообще на частоте 7.8 кГц прибор ведет иногда себя немного странно, иногда завышая емкость относительно первых двух частот. Иногда (при измерении емких конденсаторов) сваливается в режим —-OL—- или показывает превышение более 20мФ.

Кстати, разрешение прибора позволяет даже увидеть разницу места подключения к выводу. Да же на примере одного вывода видно, как меняется внутреннее сопротивление. Это я собственно к тому, что меня иногда спрашивают, а можно подключить конденсатор на проводах, если он не влазит на место. Подключить можно, но характеристики немного снизятся.

Как вы понимаете, просто измерять конденсаторы неинтересно, потому я попросил у товарища его Е7-22. Попутно заметил, что даже управление приборами имеет очень много общего.

Первым делом шли пленочные конденсаторы. Внизу прецизионный 1% конденсатор с заявленной емкостью 0.39025 мкФ.

1, 2. Полимерный конденсатор емкостью 100мкФ
3, 4. А вот с измерением больших емкостей у Е7-22 есть проблемы. Обозреваемый прибор без проблем измеряет емкость в 10000мкФ на частоте 1 кГц, Е7-22 даже на 4700 у меня уже выдавал перегрузку.

1, 2. Capxcon серии KF емкостью 330 мкФ.
3, 4. Конденсатор той же фирмы (якобы), просто пролежавший в ящике несколько лет и вспухший.

А это уже просто ради любопытства. Пара конденсаторов из моей старой материнской платы, которая отработала 24/7 около 10 лет.
1. 2200мкФ
2. 1000мкФ

Емкость у первого конденсатора заметно упала, но вот внутреннее сопротивление в порядке. Чаще бывает наоборот, емкость остается прежней, а внутреннее сопротивление растет.

Видео процесса работы и тестов.

Если у вас есть еще предложения тестов, то пока у меня на руках сразу два прибора, то мог бы поэкспериментировать. Мне же в голову пришло только проверить размах тестового сигнала.
Ниже показан размах тестового сигнала относительно земли. Верхние два — обозреваемый на частотах 100 Гц и 7.8. кГц, нижние — Е7-22 на частотах 120 Гц и 1 кГц. Разница около 2.5 раза.

Выше я писал, что в планах применять корпус где индикатор расположен не параллельно поверхности, а перпендикулярно.
Но в процессе выяснилось, что индикатор хоть применен и относительно неплохой, но ориентирован он именно на то, что смотреть будут спереди или спереди-снизу.

Под большими углами, а тем более при взгляде сверху или сбоку изображение пропадает или начинает инвертироваться.

Собственно потому я решил наконец-то попробовать дисплей изготовленный по технологии VATN. Вообще хотелось OLED, к я уже делал в этом обзоре, но 2004 купить почти нереально, а как потом выяснилось, VATN также мало где продают в онлайне.
В итоге пришлось идти в наш оффлайновый магазин, и покупать там.
На выбор было три модели, с синим, зеленым и белым шрифтом, мне больше понравился с белым, модель — WH2004A-SLL-CTV, цена около 15-16 долларов, ссылка. Производитель WINSTAR.

На первый взгляд индикаторы мало отличаются друг от друга, по крайней мере размер платы полностью идентичен — 98х60 мм.

Снизу есть небольшая разница, но на вид несущественная.

Новый индикатор примерно на 0.5мм тоньше.

Общий принцип подключения практически одинаков, за исключением нескольких нюансов, о которых я расскажу ниже.

Для начала отличие в том, что дисплеям VATN для регулировки контрастности надо отрицательное напряжение, потому на плате смонтирован преобразователь напряжения на базе известной 7660, обзор которой я также делал.
Рядом есть место для подстроечного резистора. Средний вывод идет на контакт регулировки контраста, два других на + 5 и — 5 Вольт соответственно.

Сначала я хотел установить подстроечный резистор, отдав полностью регулировку плате индикатора, но потом решил не выкусывать лишний контакт разъема и просто включил резистор так, чтобы один контакт шел на стандартный вывод регулировки контрастности (номер 3 на общем разъеме), а второй на выход отрицательных 5 Вольт.
Отрегулировал изображение, выпаял подстроечный резистор, получилось что надо было постоянный резистор с сопротивлением 2.6 кОм, ближайший под рукой был 2.49кОм, его и запаял уже «стационарно».

Но это оказалось не все.
А теперь Внимание, 15 контакт разъема у привычных индикаторов это плюсовой вывод подсветки, здесь это выход отрицательного напряжения и ни в коем случае нельзя просто менять индикатор один на другой, в итоге вы просто спалите его.

Я же сделал немного по другому, из 16 контактов запаял только 14.
Контакт 16 это минус подсветки, а плюс подключен ко входным +5 Вольт, потому просто кинул перемычку между минусом подсветки и общим проводом платы индикатора.

А здесь внимание второй раз!
Изначально я думал просто оставить 16 контакт на месте, так как у обычного индикатора туда выведен минус подсветки, рассудив что какая разница где подключать к общему проводу. И оно бы нормально работало, если бы не одно НО.
У платы прибора индикатор питается от + 5 Вольт, а подсветка от -5 Вольт. Потому подключив таким образом новый индикатор я буквально через 10-20 секунд случайно заметил что у него начала дико греться подсветка. Подключившись тестером, выяснил, что на подсветку шло не 5, а 10 Вольт (+5 и -5).
Потому с данным прибором пришлось минус подсветки подключить к общему контакту платы.

Меняем индикатор и пробуем.
Ну что сказать, это конечно не OLED, но и далеко не обычный ЖК.
Из минусов, он больше ориентирован на то, что на него будут смотреть как угодно, только не снизу, в таком варианте от вспышки он «слепнет».

Попутно измерил ток потребления со старым индикатором и новым.
1. старый — 48мА все вместе или 12 мА только индикатор.
2. новый — 153 мА или 120 мА только индикатор.

Да, для батарейного вариант куда выгоднее обычный ЖК индикатор.

Если смотреть сверху, т.е. как я и планировал, то видимость хорошая, но начинают вылазить неактивные пиксели.
От последнего можно легко избавиться, но тогда при прямом взгляде показывает тускло, я выставил нечто среднее.

Углы обзора конечно на голову выше, чем у обычного ЖК, изображение читается даже при почти взгляде параллельно экрану.
Но вылез интересный эффект (последнее фото). Если плавно поворачивать экран от себя, то в какой-то момент (примерно при 30 градусов поворота) изображение бледнеет, пытается инвертироваться, а при дальнейшем повороте почти резко опять становится нормальным. Потому для вертикальной установки дисплей подходит отлично, но при горизонтальной иногда может раздражать.

Вот в таком положении по задумке он должен у меня использоваться, здесь претензий нет.

Дальше я планировал «поселить» его, для чего купил корпус Z1. На первый взгляд все аккуратно.

Но корпус очень большой, реально раза в полтора больше, чем требуется, а хотелось бы что-то более компактное.
Размеры корпуса (наружные) — 188 ширина, 70 высота и 197 глубина. Вот последний размер и хотелось бы уменьшить до 140-150, хоть бери и пили :(
Может кто знает подходящие корпуса?

Ну и наверное обзор был бы неполным, если бы я не показал то, чем пользовался до последнего времени.
Посередине FCL метр с сайта cqham, справа C-ESR метр от автора Go c форума Pro-radio.

По данному прибору также есть обсуждение, но куда больше информации на зарубежных сайтах. Один из пользователей сайта Pro-radio даже сделал подборку, куда сложил всю найденную информацию, прошивки, платы, чертежи и т.п., за что ему огромное человеческое спасибо!

К примеру один из зарубежных радиолюбителей выложил методику калибровки прибора
Без 100 грамм не разберешься.

На этом пока все, в планах сделать небольшое продолжение, где я собираюсь все таки засунуть все это в корпус, а заодно рассказать о впечатлениях после длительного пользования.

На данный момент я пользуюсь прибором несколько дней и у меня пока только хорошие впечатления.
Из преимуществ:
1. Удовольствие от процесса сборки
2. Отличное качество печатной платы и пайки.
3. Высокая точность работы
4. Наличие частоты 7.8 кГц и больший диапазон измерений на частоте 1 кГц чем у Е7-22.
5. Четырехпроводная схема подключения
6. Малое потребление.
7. Отсутствие необходимости в отладке, с базовой калибровкой декларируют точность 0.5%, при ручной калибровке пишут о 0.3%
8. Довольно большое сообщество пользователей, хотя и иностранных.
9. Низкая цена.

Из недостатков
1. В некоторых ситуациях не совсем адекватные показания на частоте 7.8 кГц. Но здесь я буду еще пробовать.

Суммарно могу сказать, что обозреваемый прибор как функционально, так и в плане точности не хуже, а скорее всего даже лучше, чем более дорогой Е7-22. Но есть конечно и разница, Е7-22 можно поверить, а обозреваемый только для личного пользования.

Как обычно жду вопросов, советов, предложений тестов и просто комментариев, надеюсь что обзор был полезен.

$ 31.29 (без учета доставки)

Цифровой тестер моста XJW01 LCR индуктивность конденсатор резистор ремешок для

Разрядка должна быть измерена перед измерением емкости !

Теперь следующие вещи не включены.

20191009115807

Точность 0.3%. Мост DIY, и он нуждается в сварочной сборке!Пожалуйста, выберите свою посылка.Нужно иметь время, но также электронные знания и практические возможности! Стандартный испытательный комплект мостового элемента.

HC HP, красный зажим, LC LP, черный зажим

Измерение внутреннего сопротивления батареи:Сопротивление проверить,С 400-630V Конденсатор CBB напряжение составляет около 1 мкФ — 5 мкФ на ESR, низкая постоянной ёмкости, универсальный конденсатор высокого напряжения с безопасности во всем мире. Сначала Измерьте ESR1 Конденсатор CBB, а затем Измерьте весь ESR2 в серии. Эквивалент внутреннее сопротивление аккумулятора esr2-esr1

Внешне в наличии12 В свинцово-кислотные батареи или три секции 18650(С внешним аккумулятором помехи меньше, и значение измерения более стабильное, чем адаптер переключателя

РеменьHUAWEIВысокое качество 12V 1.0A адаптер питания, алюминиевое снабжение жилья светом, кронштейн, 18650, три секции контейнер под элемент питания +СтрахованияШелк+ Цепь переменного тока(Аккумуляторы 18650 должны бытьБудьте осторожны, чтобы не допустить короткого замыкания! И перегрузки)

Примечание: после того как вся машина собрана, только открытая цепь и короткое замыкание очищены и компенсированы

Кроме того,При смене различных тестовых приборов сбросить их

Основная плата была откалибрована до 0.3%. Пожалуйста, не восстанавливайте параметры по умолчанию! (точность параметров по умолчанию составляет 0.5%)

Будьте внимательныDon’tТакие операции:Пресс«Меню (мEnu) Клавиша входит в главное меню.Затем нажмите«ДиапазонRNG)«Ключ переходит в режим калибровки , Пресс сноваCКлюч,Данные о текущей калибровке товара будут очищены!

Третье: 100 Гц 1 кГц частота тестирования моста 7.8KH

По умолчанию Шэнь (Синьцзян Тибет отдаленные районы отправлены SF, разумная цена, пожалуйста, свяжитесь со службой поддержки клиентов, чтобы изменить перевозку)

Отправка 60.1% точность проверки сопротивления точность и последующая Калибровка:

40 европейский, 1K, 3k, 9K, 10K, 100K

Размер алюминиевой оболочки: 150*115*35 размер пластиковой оболочки 200*175*70

I. Обзор Xu:КнигаLCRЦифровой мост, в основном используется для точного определения компонентовL,C,RПараметры с широким диапазоном измерения и высокой точностью. Играйте с радиоприемниками, большинство необходимых компонентов«Сделай сам»Нет номинального технического параметра. Например, необходимо знать характеристики reactance резонансных устройств, устройств обнаружения, антенн, гарнитур, трансформаторов и других устройств. В том числе, высокая частота параметры может использоватьсяQТаблицы решают проблемы при низкочастотных параметрахQИзмерительный прибор трудно определить. Для того чтобы решить эту проблему,LCRЦифровой мост компетентен.

· Цели дизайна:1Способен точно измерять реакторL,C,RТочность лучше, чем0.5%Если файл калибровки осуществляется точность измерения лучше0.3%

2Легко нарисовать материалы, простая схема, легко изготовить, стоимость должна быть должным образом контролирована. Сделать его более любительским«Сделай сам»Ценность и исследовательская ценность, а также дизайн,«Сделай сам»НаучитьсяLCRСоответствующие детали и принципы электрического моста.

· БенLCRИсходное состояние таблицы характеристикиADКоличество преобразователей: прибл.1000Используется метод oversampling, и Эффективное разрешение составляет приблизительно4000Word

Метод измерения: квази-мостовое измерение, принцип измерения аналогичен методу пропорции измерительного сопротивления.

Основной Диапазон измерения:1В Европу0,5Триллионов, точность0.5%(Теория) сравнение импеданса не окончено0.3%

Диапазон сопротивления: Эффективный диапазон измерения: от 2 до 10 Ом Европа, дискретность около 0,5-1 центов в европейском стиле
Индуктивность: разрешение 0,02 UH, диапазон измерения от 0,1 UH до 1000H, за пределами 1000H НЕ протестирован (теоретически также можно измерить)
Емкость: разрешение связано с зажимами. Если приспособление хорошее, оно может эффективно отличить 0.05pF и не может отличить только 0.1pF и даже 1pF. Верхний предел не проверяется. Только 10000 мкФ конденсатор с алюминиевой крышкой, была измерена. Нет больше постоянной ёмкости, универсальный конденсатор на руке

Разрядка должна быть измерена перед измерением емкости!

Вы измерили 192 тысячи мкФ

(U измеряется до 80 тысяч uF)

Вы измерили 130 тысяч мкФ

Тесты частота: 100 Гц 1 кГц 7,8 кГц 3

Функциональные характеристики моста V3.0:

Основной дисплей1999,9Счет, тиски, шоу999,9Рассчитывать
2Частота измерения:100 Гц/1 кГц/7,8 кГц

Просим Вас принять во внимание тот факт напряжение:0,2 Vrms

Выходное сопротивление:40Ω

Основная точность:0.3%

6LCRАвтоматическая идентификация/ручное измерение

Открытый/короткий, калибровка и компенсация

Отображение основных параметров:

Cp: Конденсатор с алюминиевой крышкой, параллельный режим
Cs: Конденсатор с алюминиевой крышкой серии режим
Lp: Индуктивности параллельно режим
V-образной КРЕПЕЖНОЙ ПЛАСТИНОЙ Ls: Индуктивные датчики серии режим
Титановый Электролитный электрод со случайно выбранным: Резистор параллельный режим
Rs: Сопротивление серии режим
Вспомогательный справочный дисплей:
Q: Добротность
D: Коэффициент потерь
& Theta;: Угол сдвига фаз
Титановый Электролитный электрод со случайно выбранным: Эквивалент шунтирующее сопротивление
ESR: Эквивалентного последовательного сопротивления

Xp: Эквивалент шунта реактивное

Xs: Эквивалент Серии реактивное

Инструкция по эксплуатации:

1Автоматическое измерение

При включении прибора по умолчанию используется режим автоматической идентификации (auto), а частота измерения по умолчанию-1 кГц.

В автоматическом режиме прибор автоматически определяет характеристики импеданса измеренного объекта, автоматически выбирает основные параметры L, C или R и подходит для параллельного режима серии.

В автоматическом режиме измерения серия и параллельные режимы определяются в соответствии с импедансом испытанного объекта. Когда сопротивление высокое (> 10K & Omega), выбран параллельный режим; Когда Сопротивление низкое (< 10K & Omega), выбран режим подключения серии.

2Параметры измерения в режиме L / C / R

1)Выбор основных параметров, в режиме загрузки по умолчанию, нажмите кнопку «mode (X)», ключевые параметры выбираются как «AUTO & rarr; AUTO-C & rarr; AUTO-L; авто & rdquo & rarr; AUTO-R; & rarr;

Примечание 1: в режиме серии «ESR» в параллельном режиме «RP» Xs / Xp активируется только при Главном параметре R (сопротивление).

3Выбор параллельного режима измерения серииВ соответствующем основном режиме нажмите кнопку «значение (R)», параметр выбирается как & ldquo в свою очередь; AUTO- & rarr; P & rarr; S & rarr; авто-”.

4Измерения частотыЭтот мост, обеспечивая 3 Частоты тестовые точки: 100 Гц/1 кГц/7,8 кГц по умолчанию частота 1 кГц, нажмите кнопку «частоты (F)» ключ для того чтобы выбрать различные частоты измерения 1 кГц и rarr; 7,8 кГц и rarr; 100 Гц и rarr; 1 кГц».

5Компенсация калибровки открытого замыкания/короткого замыканияИзмерительный зажим находится в открытом или коротком замыкании, в соответствии с клавишей «zeroing (C)» возможна калибровка частоты открытия/короткого замыкания. (Измерительный зажим, пресс с открытым контуром, ключ «zeroing (C)», может подметать частоту открытия цепи; Прозрачный тестовый зажим короткого замыкания; Нажмите кнопку C, чтобы сделать очистку от короткого замыкания)

6.Относительного измерения

В режиме измерения нажмите кнопку & ldquo parameter (Q);», чтобы записать текущее измеренное значение и войти в режим относительного измерения, нажмите и удерживайте ldquo снова; параметры (Q)» ключа или переключателя режима, выйдут из относительного измерения. В режиме относительного измерения второстепенные участники показывают относительную погрешность В записанном значении измеренного объекта, которая выражена в процентном соотношении.
Диапазон выражений: от-99.9% до + 99.9%

Измерение внутреннего сопротивления батареи: шнур 1 мкФ высокого напряжения CBB, общее значение минус CBB ESR


Мы тут сидим, обсуждаем несколько лет «Измеритель RLC-2», и не знаем, что где-то на другом конце планеты, в Китае, параллельно существует, обсуждается и развивается другой подобный радиолюбительский проект, LCR Meter XJW01. Тема на китайском форуме:
http://www.crystalradio.cn/thread-231933-1-1.html
Название темы: 0.3%精度LCR数字电桥
, что то по-русски означает «Измеритель RLC, точность 0,3%», создатель темы: XJW01. И я так понял, что позже, по нику создателя темы и разработчика прибора был назван этот прибор.

У нас обсуждение прибора началось вот здесь: http://pro-radio.ru/measure/12869-14/2017/07/31/16-51-59/
Прошу заинтересовавшихся присоединиться к обсуждению уже в этой теме.

Лично мне в этом приборе понравился четырех строчный дисплей, и способ отображения информации на нем, с автоматическим опрделением элемента (резистор, конденсатор, катушка индуктивности).
Резистор:

Конденсатор:

Катушка индуктивности:

Я так понимаю, есть возможность изменять отображение информации. То, что на фото выше, это отображение в автоматическом режиме. То есть, подключил тестируемый элемент, сразу получил определение элемента (сопротивление, емкость или индуктивность), и соответствующее отображение.
Но такое отображение информации на дисплее было не всегда, сначала был двухстрочный дисплей. Наверное, и сейчас есть возможность подключать двухстрочный дисплей и четырехстрочный.

 

Эх … и почему я в школе прогуливал китайский язык ?

 

translate.google.ru хорошо справляется с китайским. А вот здесь:
http://www.newocr.com/
можно распознать китайские иероглифы на картинке и превратить их в китайский текст (тоже в виде иероглифов), а потом через translate.google.ru перевести на русский.

Я просил участника extraid в другой теме:
http://pro-radio.ru/measure/12869-14/2017/07/31/16-51-59/
попробовать вывести на индикатор измерение емкости резисторов от 100 кОм до 1 МОм.
Прошу это сделать в этой теме.

 

Гуголь , по отзывам, весьма адекватно переводит с китайского на английский. Ну, а до русского там рукой подать.
Индикатор восхищения не вызывает, опять кислая поделка, хоть и в 4-е строки.
В остальном, думаю, ничего нового.
С автоматическом режимом должно быть много путаницы.
Это так, на вскидку!

 

Китайцы сделали так, что на индикатор не выводятся (как в RLC-2) скачущие, мелкие по своей значимости параметры. А точнее, выводят их так, что они выглядят стабильно. Например, Rs или Rp выводится в тех же единицах, что и Xs. А еще в автоматическом режиме, прибор сам выбирает схему замещения, до 10 кОм последовательная, свыше 10 кОм — параллельная. Интересно узнать, можно ли вручную задавать (изменять) схему замещения? Можно ли при желании для резистора вместо X вывести C или L?

 

Для RLC-2 отсюда взять почти нечего. Проще всего применить дисплей 20х2. Если же речь о другом приборе, то опять же, взять из этого почти нечего, за прошедшие со дня создания годы появилась более подходящая элементная база. Дисплей, конечно, хороший. Но, ИМХО, с прицелом на самое недалёкое будущее, делать новый прибор стоит с цветным графическим.
Что в этом приборе не понравилось — нестандартная частота измерения, расположение выключателя питания и кнопок управления (разъёмы входных щупов ощутимо выпирают над лицевой панелью, и нажимать нижний ряд кнопок не очень удобно).
А вот самих кнопок больше, это плюс, мне нравится, когда большинство часто используемых переключений делаются в одно касание, а не последовательным перебором.

 

Дык… а где ссылка на Али? Если её нет, то остальное обсуждение — в пользу бедных.

 

Ссылка на Али там, где началось обсуждение этого прибора:
http://pro-radio.ru/measure/12869-14/2017/07/31/16-51-59/
Кроме того, на Али каждый сам может ввести в поиск: XJW01.

Вот ссылка на Алиэкспресс.

 

Тетраэдр: Для RLC-2 отсюда взять почти нечего.

Я тоже так считаю. Даже схема, практически, один в один с RLC-2.
То, что на дисплей выодится больше информации — конечно плюс, но это заслуга программиста и на метрологические характеристики влиять не должно. По этому, если переделывать в этом направлении RLC-2, то это будет совсем другой прибор. Например, RLC-3.
Но тогда теряется смысл переделки, потому что если уже переделывать RLC-2, то на более современную элементную базу, на более крутом МК с увеличенным и расширенным сервисом.

P.S.

АК: …точность 0,3%…

По моим оценкам, точность RLC-2 не превышает 0,1%. В среднем — 0,05%…0,07%.
Конечно, у каждого будут свои цифры, зависящие от точности применённых деталей и настройки.
Если учесть, что я свой RLC-2 особо не вылизывал, то, думаю, реально достижимая точность может быть меньше 0,05%.

 

Повторю здесь измерения выводных резисторов в режиме емкости.

Резистор выводной 0,125Вт 5%
130К частота 1КГц

130K частота 7,8КГц

680K

1M

Диапазоны думаю находятся примерно в середине. На автоматике 3К диапазон выбирается при измерении сопротивлений ~ от 2К до 6К.
Низкоомные резисторы при измерении как конденсатор:
100Ом и 360Ом

Приходиться у низкоомных в ручную переключать режим замещения, в автомате измеряеть как ESR.

 

$ 31.29 (без учета доставки)

Я уже довольно длительное время пользуюсь самодельным измерителем емкости и ESR конденсаторов, собранного по схеме от автора GO с форума ProRadio. Попутно в моем использовании есть и другой, не менее популярный измеритель FCL с сайта cqham.
Сегодня в обзоре прибор, который имеет выше заявленную точность, а также фактически объединяющий оба указанных выше прибора.
Внимание, много фото, мало текста, может быть критично для пользователей с дорогим трафиком.

Стоит наверное начать с того, что данный прибор продается и в полном, т.е. уже собранном виде. Но в данном случае конструктор был выбран целенаправленно, так как это как минимум позволяет немного сэкономить средства, а как максимум, просто получить удовольствие от сборки. Причем наверное второе важнее.
Вообще я давно хотел сменить предыдущую модель C-ESR метра. В принципе он работает, но после как минимум одного ремонта стал вести себя не совсем адекватно при измерении ESR. А так как я много работаю с импульсными блоками питания (хотя это и для обычных актуально), то этот параметр для меня даже более важен, чем просто емкость.
Но в данном случае мы имеем дело не с просто измерителем C-ESR, а с прибором, который измеряет ESR + LCR, а полный список измеряемых величин выглядит еще больше, кроме того заявлена еще и неплохая точность.

Индуктивность 0,01 uH — 2000H (10 uH)
Ёмкость 200pF — 200 мФ (10pF) Разрешение 0,01pF
Сопротивление 2000мОм- 20MОм (1.5 Ом) Разрешение 0,1 мОм
Точность 0,3 – 0,5 %
Частота тестового сигнала 100 Гц, 1 кГц, 7,831 кГц
Тестовое напряжение 200 мВ
Функция калибровки автоматическая
Выходное сопротивление 40 Ом

Прибор умеет измерять —
Q — Добротность
D — Коэффициент потерь
Θ — Угол сдвига фаз
Rp — Эквивалентное параллельное сопротивление
ESR — Эквивалентное последовательное сопротивление
Xp — Эквивалентная параллельная емкость
Xs — Эквивалентная последовательная емкость
Cp — Параллельная емкость
Cs — Последовательная емкость
Lp — Параллельная индуктивность
Ls — Последовательная индуктивность

При этом измерение проводится мостовым методом при помощи четырехпроводного подключения компонента.

На мой взгляд ближайшим конкурентом является Е7-22, но он имеет меньше заявленную точность измерения (0.5-0.8%), тестовую частоту только 120 Гц и 1 кГц и тестовое напряжение 0.5 Вольта против 0.3%, 120 Гц — 1 кГц — 7.8 кГц, 0.2 Вольта у обозреваемого.

Продается данное устройство в нескольких вариантах комплектации, в обзоре использован почти самый полный вариант. Цены со страницы продавца.
1. Только сам прибор без корпуса — $21.43
2. Прибор + один вид щупов — $25.97
3. Прибор + второй вид щупов — $26.75
4. Прибор + два вида щупов — $31.29
5. Корпус к прибору. — $9.70

Упаковано все было в кучу маленьких пакетов.

Так как при доставке через посредника обычно учитывается вес посылки, то я дополнительно решил взвесить, без кабелей вышло 333 грамма, с кабелями заметно больше, 595 грамм.
В общем-то вполне можно покупать и без кабелей, особенно если есть из чего их сделать самому, так как разница только в цене комплекта выходит около 10 долларов, не считая веса.

Вот кстати с кабелей я и начну.
Упакованы в отдельные пакеты, даже просто по ощущениям вес приличный.

Первый комплект представляет из себя по сути обычные «крокодилы», но побольше размером и в пластмассе. Но на самом деле не все так просто, губки подключены к разным проводам (разъемам) чтобы реализовать корректное четырехпроводное подключения.
Кабель в меру гибкий, жесткость скорее добавляет то, что кабелей четыре, при этом они экранированные. К самому прибору щупы подключаются при помощи обычных BNC разъемов, экран подключен только на стороне BNC разъема.

Нареканий к качеству нет, единственно что не очень понравилось, отсутствие цветной маркировки около разъемов, так как сами крокодилы её имеют. В итоге для подключения надо каждый раз смотреть, какой куда подключаем. Решение — сделать метку изолентой около разъемов.

А вот второй комплект куда интереснее, он позволяет работать с мелкими компонентами, так как представляет собой пинцет.
На фото видно, что центральные жилы проводов соединяются не у концов пинцета, а на некотором расстоянии, т.е. такой вариант чуть хуже предыдущего, но и реализовать систему как у «крокодилов» здесь сложнее. Цветовой маркировки нет.
Для удобства пользования пинцет имеет направляющую, защищающую губки от сдвига друг относительно друга. Не знаю насколько долго они прослужат, но пока пользоваться довольно удобно, хотя есть и замечание — сжимать надо ближе к самим губкам, если сжимать пинцет около середины корпуса, то губки могут не сходиться полностью.

Буквально пару слов о том, что вообще такое — четырехпроводное подключение или подключение методом Кельвина. Картинки взяты отсюда, текст мой :)

При привычном нам измерении сопротивления (кстати не только сопротивления) может довольно сильно влиять такая паразитная вещь, как провода к щупам. Думаю многие знают, что редко какой мультиметр при замкнутых щупах и нижнем пределе измерения покажет 0. На индикаторе обычно при этом отображается некое значение примерно 0.05-0.5 Ома, это и есть паразитное сопротивление.
Иногда его можно компенсировать путем включения функции относительных измерений(Rel), но это не всегда удобно и далеко не всегда корректно.

Сам принцип измерения сопротивления довольно прост. Подключаем компонент к источнику тока и измеряем напряжение на компоненте. Но так как у нас есть сопротивление проводов, то получим в итоге сумму, состоящею из реального сопротивления компонента и сопротивления провода.
Если сопротивление большое, то обычно это особой роли не играет, а вот если речь идет о величинах в 1-10 Ом и меньше, то проблема вылазит в полный рост.
Для решения этой проблемы разделяют цепи, по которым идет ток через компонент и цепи непосредственно измерения.

В реальной жизни это выглядит примерно так, как показано на схеме.

Кроме того, подобный способ используется к примеру и в блоках питания. Например фото из моего обзора мощного преобразователя. Здесь также можно разделить силовую цепь и цепь обратной связи, тогда падение напряжения на проводах не будет сказываться на напряжении на нагрузке.
Еще вы подобное наверняка видели в компьютерных блоках питания по цепи 3.3 Вольта (оранжевые провода). только там использована трехпроводная схема (тот самый добавочный тонкий провод к силовому разъему)

Блок питания 12 Вольт 1 Ампер, внешне неплохой. Впрочем я пробовал подключать его и просто к нагрузке, работает нормально.
Но из-за вилки с плоскими штырями использовать его неудобно, заменю на что-то другое, благо напряжение стандартное.
Реально прибор может питаться напряжением 9-15 Вольт.
Жаль, что нельзя выбрать комплектацию без БП, думаю такой БП найдется дома у многих радиолюбителей.

Основная часть комплекта была разбита на три отдельных пакета.

В одном из них самый обычный дисплей 2004 (20 символов, 4 строки) с подсветкой.

Плата прибора была тщательно обернута «воздушной» пленкой.

Здесь как раз тот случай, когда на фото в магазине плата кажется меньше, чем есть на самом деле :)
Реальные размеры 100х138мм.

Переднюю часть платы занимает место для разъемов подключения щупов.

Средняя часть — измерительный узел, переключатели, операционные усилители. Видимо предполагалась экранировка данного узла, но самого экрана в комплекте нет.

В верхней части «мозги» и питание.

В первых версиях прибора использовались линейные стабилизаторы питания, в данной версии они заменены на импульсные.
Также виден разъем для подключения блока питания и выключатель.
Замена стабилизаторов на импульсные может заметно помочь при питании от аккумуляторов. Например в комплекте к алюминиевому корпусу идет кассета на 3 аккумулятора 18650.

Управляет всем микроконтроллер 12C5A60S2. Базируется он на стареьком 8051 ядре и имеет на борту восьмиканальный 10 бит АЦП. В первых версиях прибора он был в DIP-40 корпусе, в новых версиях заменен на SMD вариант.

Также на плате имеется разъем для подключения к программатору.

Несколько отдельных фото установленных компонентов.

Снизу пусто, сюда выведены только точки пайки экрана и контрольные точки выходов стабилизаторов и преобразователей питания.

Ну и последний пакетик, с радиодеталями, которые собственно надо будет еще установить на плату.

Сюда входит плата клавиатуры, а также всякие резисторы, конденсаторы, разъемы и т.д.
Вообще конструкция довольно продумана, мелкие компоненты уже распаяны на плате, установить и запаять надо только более габаритные. Т.е. сохранен элемент «рукоприкладства», но при этом нет мазохизма для начинающих радиолюбителей в плане пайки мелких компонентов, да и «накосячить» куда сложнее. В итоге можно довольно быстро собрать устройство и получить при этом положительные впечатления от процесса.

Компоненты разложены по пакетикам, но в основном по нескольку номиналов в одном пакете.

Все резисторы, которые входят в комплект, прецизионные. На начальном этапе я на всякий случай измерил их реальное сопротивление.
В сборке помогает то, что номиналов немного, но при этом они еще и легко измеряются даже дешевым тестером, так как нет резисторов слишком близких друг к другу по номиналу.
Вверху то, что надо паять, номиналов по сути всего шесть — 40 Ом, 1, 2, 10, 16 и 100 кОм.

Вверху резисторы из подписанного пакета, они на плату не запаиваются, а используются для проверки и калибровки прибора. Сначала я думал что их надо запаивать в какие-то ответственные места, собственно потому и измерил сопротивление. Но потом выяснилось, что они «лишние», а количество (16 штук) устанавливаемых резисторов совпадает с количеством, которые были в первом пакете.

В комплект входят конденсаторы с номиналами — 3.3, 10, 22, 47 нФ, 0.1, 0.2 и 0.47мкФ.
Ниже на фото я обозначил конденсаторы так, как они обозначены на плате.

Кроме того дополнительно устанавливаются разъемы, пара электролитических конденсаторов, реле и пищалка.

Пока ждал свою посылку, поискал в интернете расширенную информацию о приборе. Выяснилось что есть не только схема, а и разные версии печатной платы, прошивки, да и вообще довольно много людей занимается данной моделью.
Схема конечно довольно условна, но общее понимание вполне дает.

Но попутно вспомнил, что примерно 8-9 лет назад, в моем же городе человек разрабатывал подобное устройство. Если посмотреть на схему, то можно увидеть много общего, причем разработан он был до обозреваемого.

Очень поднял настроение комментарий продавца на странице товара, сорри за гуглоперевод.
В простом виде (ну очень утрированно) он означает — платы все я проверяю, высылаю в отличном виде, потому не надо мне присылать ваши поделки, паяные горячим гвоздем на коленке с ортофосфоркой вместо флюса.
Любите вашу плату и относитесь к ней как к любимой подруге :)

Стоит отметить, что как качество изготовления платы, так и пайка компонентов на 5 баллов. Все не только аккуратно припаяно, но и тщательно промыто!
При этом все установочные места промаркированы и имеют как позиционное обозначение, так и указание номинала компонента. Вот честно, 5 баллов.

Видео распаковки и описания комплекта.

Переходим к сборке. Вообще я когда раскрыл все эти пакеты и разложил на столе, то реально хотелось сразу сесть и спаять эту конструкцию, остановило только то, что было решено сделать некую небольшую инструкцию для сборки, если вдруг это решит делать кто-то из начинающих.
Первым делом высыпаем на стол резисторы и находим те, которых больше всего, это номиналы 2 и 10 кОм.

Устанавливаем и запаиваем сначала их. Это позволит быстро убрать с платы большую часть свободных мест и облегчит потом поиск оставшихся.

Я прекрасно понимаю, что моя инструкция совсем для начинающих, потому остальную часть сборки спрячу под спойлер.

После сборки мы получаем довольно красивую печатную плату, главное ничего не напутать в процессе :)

Выводы резисторов я формовал при помощи небольшого приспособления, но оказалось, что расстояние между выводами получается немного больше, чем надо. В итоге я решил резисторы немного приподнять над платой, но скорее для красоты, по крайней мере мне так больше нравится.

После пайки обязательно промываем плату, так как флюса было мало, то я обошелся спиртом.

Уже после сборки обратил внимание, что плату можно немного укоротить от базовых 138мм. Примерно до 123-124мм если оставить разъем программирования или до 114мм если его тоже вырезать. Разъемы подключения щупов в таком случае подключаются проводами в специально предназначенные отверстия. Возможно будет полезно при «упаковке» в маленький корпус.

На плате клавиатуры расположены только кнопки, причем случайно дали не 8, а 9 кнопок. Одна кнопка «слиплась» с другой.

Зато не положили в комплекте одну «гребенку», пришлось немного распотрошить «загашник», заодно достал и ответные части.
Правда в моем случае были только угловые разъемы, зато много :)
Вообще полезно иметь в хозяйстве набор таких разъемов, бывает частенько выручают.

Припаиваем разъемы к плате клавиатуры и индикатору. Кстати, подключение клавиатуры реализовано полноценно, т.е. каждой кнопке свой вывод процессора, а не использование резисторов и АЦП, как это иногда бывает.

Вот и все, комплект полностью готов.

В собранном виде компоновка напоминает мультиметр, сверху индикатор, ниже кнопки, а еще ниже разъемы.

Как можно понять из того, что я писал выше, это вторая версия прибора, по сути доработанная. Но вот вариант корпуса мне больше нравится именно у предыдущей версии и в планах делать именно такой вариант корпуса. Правда стоит такой корпус порядка 9-10 долларов, а если покупать с платой клавиатуры и передней панелью, то еще больше. Кстати у меня уже был обзор такого корпуса, где я собирал в нем регулируемый блок питания.

Мой же вариант рассчитан под установки в алюминиевый корпус.

И по задумке должен выглядеть как на этом фото. Но скажем так, дизайн это больше индивидуальное, в интернете мне попадались различные варианты.

После сборки у меня остались тестовые резисторы, кнопка и немного крепежа. Ну и блок питания со щупами конечно.

Теперь переходим к описанию возможностей прибора и специфики его работы.
При включении приветственная надпись, затем базовый рабочий экран. К слову, все заработало сразу, в приборе вообще нет никаких подстроечных элементов, собрал — включил — пользуйся.

Прибор умеет работать в четырех основных режимах:
1. Автоматический выбор. Здесь прибор сам определяет что измерять. Выбор производится по преобладающей величине. Т.е. если у компонента преобладает емкостная составляющая, то перейдет в режим измерения емкости, если индуктивная, то в режим измерения индуктивности. Иногда может ошибаться, особенно если компонент имеет несколько выраженных составляющих, например некоторые резисторы могут быть определены как индуктивность.
В помощь автоматике добавили ручной выбор —
2. Измерение емкости
3. Индуктивности
4. Сопротивления.

Также на индикатор выводится частота тестового сигнала и предел измерения. Пределы измерения несколько «нестандартны» и насчитывают аж 16 штук — 1.5, 4.5, 13, 40, 120, 360 Ом. 1, 3, 9, 10, 30, 90, 100, 300, 900 кОм и 2.7 МОм.

По умолчанию прибор стартует в автоматическом режиме измерения на частоте 1кГц.

Немного об управлении.
Под индикатором расположены восемь кнопок, он подписаны.
M — Меню, отсюда производят необходимые калибровки и сброс настроек на заводские.
RNG — Диапазон. В меню эта кнопка дает доступ к подменю калибровок.
С — Быстрая автоматическая калибровка.
L — Переключение режима индикации (первое фото). В меню — память
X — Переключение режимов работы прибора. В режиме меню — выход.
R — Уменьшение значения в режиме калибровки (X- увеличение)
Q — режим относительных измерений. Можно использовать для подбора двух одинаковых компонентов. подключаем образцовый компонент, нажимаем на кнопку, отключаем образцовый и подключаем подбираемые. На экране будет отображен процент расхождения (второе фото).
F — Выбор частоты 100 Гц — 1 кГц — 7.8 кГц.

Вид меню прибора.

Режим быстрой калибровки по нажатию кнопки С имеет два варианта:
1. При измерении емкости и индуктивности производится с разомкнутыми щупами.
2. При измерении сопротивления — с замкнутыми. В обоих вариантах прибор самокалибруется три раза по каждой из частот.
3, 4. Калибровка в режиме сопротивления, видно сопротивление щупов до калибровки и после.

В режиме измерения малых сопротивлений калибровка имеет довольно большое значение, так как возможности прибора позволяют даже «увидеть» сопротивление выводов конденсатора, не говоря о разных проводах.

Естественно в этом режиме удобно измерять сопротивление низкоомных резисторов, а также такие «нестандартные» измерения как — сопротивление контактов кнопок, реле или разъемов.

В плане точности измерения сопротивления прибор вполне может соперничать с моим Unit 181.

При измерении индуктивности прибор также вел себя довольно неплохо. На фото индуктивность 22мкГн и три теста с разными частотами индуктивности с номиналом 150мкГн.

Вот теперь можно перейти к главному, собственно для чего в основном он мне нужен, измерению параметров конденсаторов.

Поначалу я просто тыкал разные конденсаторы и смотрел что показывает, но один (а точнее пара) меня удивил.
Я промерил пару одинаковых конденсаторов, которые были выпаяны из старой (около 20 лет) Венгерской или Чехословацкой аппаратуры. Один показал 488мкФ, а второй почти 600. Все бы ничего, но изначально это конденсаторы 470мкФ 40 Вольт.
Причем они по разному себя ведут на частоте 7.8 кГц. Вернее разница в емкости не пропорциональна друг с другом.

Затем я взял еще один конденсатор (вроде Матсушита), купленный давно, но так и лежащий в загашнике.
Прибор смог нормально измерить емкость на частоте 100 Гц и 1 кГц, но на высокой частоте емкость отобразил несколько некорректно. Вообще на частоте 7.8 кГц прибор ведет иногда себя немного странно, иногда завышая емкость относительно первых двух частот. Иногда (при измерении емких конденсаторов) сваливается в режим —-OL—- или показывает превышение более 20мФ.

Кстати, разрешение прибора позволяет даже увидеть разницу места подключения к выводу. Да же на примере одного вывода видно, как меняется внутреннее сопротивление. Это я собственно к тому, что меня иногда спрашивают, а можно подключить конденсатор на проводах, если он не влазит на место. Подключить можно, но характеристики немного снизятся.

Как вы понимаете, просто измерять конденсаторы неинтересно, потому я попросил у товарища его Е7-22. Попутно заметил, что даже управление приборами имеет очень много общего.

Первым делом шли пленочные конденсаторы. Внизу прецизионный 1% конденсатор с заявленной емкостью 0.39025 мкФ.

1, 2. Полимерный конденсатор емкостью 100мкФ
3, 4. А вот с измерением больших емкостей у Е7-22 есть проблемы. Обозреваемый прибор без проблем измеряет емкость в 10000мкФ на частоте 1 кГц, Е7-22 даже на 4700 у меня уже выдавал перегрузку.

1, 2. Capxcon серии KF емкостью 330 мкФ.
3, 4. Конденсатор той же фирмы (якобы), просто пролежавший в ящике несколько лет и вспухший.

А это уже просто ради любопытства. Пара конденсаторов из моей старой материнской платы, которая отработала 24/7 около 10 лет.
1. 2200мкФ
2. 1000мкФ

Емкость у первого конденсатора заметно упала, но вот внутреннее сопротивление в порядке. Чаще бывает наоборот, емкость остается прежней, а внутреннее сопротивление растет.

Видео процесса работы и тестов.

Если у вас есть еще предложения тестов, то пока у меня на руках сразу два прибора, то мог бы поэкспериментировать. Мне же в голову пришло только проверить размах тестового сигнала.
Ниже показан размах тестового сигнала относительно земли. Верхние два — обозреваемый на частотах 100 Гц и 7.8. кГц, нижние — Е7-22 на частотах 120 Гц и 1 кГц. Разница около 2.5 раза.

Выше я писал, что в планах применять корпус где индикатор расположен не параллельно поверхности, а перпендикулярно.
Но в процессе выяснилось, что индикатор хоть применен и относительно неплохой, но ориентирован он именно на то, что смотреть будут спереди или спереди-снизу.

Под большими углами, а тем более при взгляде сверху или сбоку изображение пропадает или начинает инвертироваться.

Собственно потому я решил наконец-то попробовать дисплей изготовленный по технологии VATN. Вообще хотелось OLED, к я уже делал в этом обзоре, но 2004 купить почти нереально, а как потом выяснилось, VATN также мало где продают в онлайне.
В итоге пришлось идти в наш оффлайновый магазин, и покупать там.
На выбор было три модели, с синим, зеленым и белым шрифтом, мне больше понравился с белым, модель — WH2004A-SLL-CTV, цена около 15-16 долларов, ссылка. Производитель WINSTAR.

На первый взгляд индикаторы мало отличаются друг от друга, по крайней мере размер платы полностью идентичен — 98х60 мм.

Снизу есть небольшая разница, но на вид несущественная.

Новый индикатор примерно на 0.5мм тоньше.

Общий принцип подключения практически одинаков, за исключением нескольких нюансов, о которых я расскажу ниже.

Для начала отличие в том, что дисплеям VATN для регулировки контрастности надо отрицательное напряжение, потому на плате смонтирован преобразователь напряжения на базе известной 7660, обзор которой я также делал.
Рядом есть место для подстроечного резистора. Средний вывод идет на контакт регулировки контраста, два других на + 5 и — 5 Вольт соответственно.

Сначала я хотел установить подстроечный резистор, отдав полностью регулировку плате индикатора, но потом решил не выкусывать лишний контакт разъема и просто включил резистор так, чтобы один контакт шел на стандартный вывод регулировки контрастности (номер 3 на общем разъеме), а второй на выход отрицательных 5 Вольт.
Отрегулировал изображение, выпаял подстроечный резистор, получилось что надо было постоянный резистор с сопротивлением 2.6 кОм, ближайший под рукой был 2.49кОм, его и запаял уже «стационарно».

Но это оказалось не все.
А теперь Внимание, 15 контакт разъема у привычных индикаторов это плюсовой вывод подсветки, здесь это выход отрицательного напряжения и ни в коем случае нельзя просто менять индикатор один на другой, в итоге вы просто спалите его.

Я же сделал немного по другому, из 16 контактов запаял только 14.
Контакт 16 это минус подсветки, а плюс подключен ко входным +5 Вольт, потому просто кинул перемычку между минусом подсветки и общим проводом платы индикатора.

А здесь внимание второй раз!
Изначально я думал просто оставить 16 контакт на месте, так как у обычного индикатора туда выведен минус подсветки, рассудив что какая разница где подключать к общему проводу. И оно бы нормально работало, если бы не одно НО.
У платы прибора индикатор питается от + 5 Вольт, а подсветка от -5 Вольт. Потому подключив таким образом новый индикатор я буквально через 10-20 секунд случайно заметил что у него начала дико греться подсветка. Подключившись тестером, выяснил, что на подсветку шло не 5, а 10 Вольт (+5 и -5).
Потому с данным прибором пришлось минус подсветки подключить к общему контакту платы.

Меняем индикатор и пробуем.
Ну что сказать, это конечно не OLED, но и далеко не обычный ЖК.
Из минусов, он больше ориентирован на то, что на него будут смотреть как угодно, только не снизу, в таком варианте от вспышки он «слепнет».

Попутно измерил ток потребления со старым индикатором и новым.
1. старый — 48мА все вместе или 12 мА только индикатор.
2. новый — 153 мА или 120 мА только индикатор.

Да, для батарейного вариант куда выгоднее обычный ЖК индикатор.

Если смотреть сверху, т.е. как я и планировал, то видимость хорошая, но начинают вылазить неактивные пиксели.
От последнего можно легко избавиться, но тогда при прямом взгляде показывает тускло, я выставил нечто среднее.

Углы обзора конечно на голову выше, чем у обычного ЖК, изображение читается даже при почти взгляде параллельно экрану.
Но вылез интересный эффект (последнее фото). Если плавно поворачивать экран от себя, то в какой-то момент (примерно при 30 градусов поворота) изображение бледнеет, пытается инвертироваться, а при дальнейшем повороте почти резко опять становится нормальным. Потому для вертикальной установки дисплей подходит отлично, но при горизонтальной иногда может раздражать.

Вот в таком положении по задумке он должен у меня использоваться, здесь претензий нет.

Дальше я планировал «поселить» его, для чего купил корпус Z1. На первый взгляд все аккуратно.

Но корпус очень большой, реально раза в полтора больше, чем требуется, а хотелось бы что-то более компактное.
Размеры корпуса (наружные) — 188 ширина, 70 высота и 197 глубина. Вот последний размер и хотелось бы уменьшить до 140-150, хоть бери и пили :(
Может кто знает подходящие корпуса?

Ну и наверное обзор был бы неполным, если бы я не показал то, чем пользовался до последнего времени.
Посередине FCL метр с сайта cqham, справа C-ESR метр от автора Go c форума Pro-radio.

По данному прибору также есть обсуждение, но куда больше информации на зарубежных сайтах. Один из пользователей сайта Pro-radio даже сделал подборку, куда сложил всю найденную информацию, прошивки, платы, чертежи и т.п., за что ему огромное человеческое спасибо!

К примеру один из зарубежных радиолюбителей выложил методику калибровки прибора
Без 100 грамм не разберешься.

На этом пока все, в планах сделать небольшое продолжение, где я собираюсь все таки засунуть все это в корпус, а заодно рассказать о впечатлениях после длительного пользования.

На данный момент я пользуюсь прибором несколько дней и у меня пока только хорошие впечатления.
Из преимуществ:
1. Удовольствие от процесса сборки
2. Отличное качество печатной платы и пайки.
3. Высокая точность работы
4. Наличие частоты 7.8 кГц и больший диапазон измерений на частоте 1 кГц чем у Е7-22.
5. Четырехпроводная схема подключения
6. Малое потребление.
7. Отсутствие необходимости в отладке, с базовой калибровкой декларируют точность 0.5%, при ручной калибровке пишут о 0.3%
8. Довольно большое сообщество пользователей, хотя и иностранных.
9. Низкая цена.

Из недостатков
1. В некоторых ситуациях не совсем адекватные показания на частоте 7.8 кГц. Но здесь я буду еще пробовать.

Суммарно могу сказать, что обозреваемый прибор как функционально, так и в плане точности не хуже, а скорее всего даже лучше, чем более дорогой Е7-22. Но есть конечно и разница, Е7-22 можно поверить, а обозреваемый только для личного пользования.

Как обычно жду вопросов, советов, предложений тестов и просто комментариев, надеюсь что обзор был полезен.

$ 31.29 (без учета доставки)

Доброго всем дня!
В этой статейке я разскажу, как я попытался впихнуть в корпус и приделать аккумуляторное питание RLC метру-конструктору XJW01, и что из этого получилось. Заодно, будем делать печатную плату :)

В один прекрасный момент, здесь на сайте появился прекрасный обзор от Kirich на замечательный RLC метр. Я понял, что тоже хочу такой конструктор.
Прибор был куплен на ТаоБао, но уже давно — доступен и на али, по названию XJW-01.
Про сам прибор разсказывать не буду, все прекрасно описано в обзоре по ссылке выше.
В очень скором времени, Kirich довел свой прибор до ума. У меня — руки дошли только месяц назад :)

Я предпочитаю корпуса польского производства Kradex. Для даной конструкции — я приобрел в местном магазине корпус Z2P, шириной 150, высотой 70 и глубиной 180 мм.
Питание — тоже решил сделать от аккумулятора, заодно придумал зарядное устройство и индикацию разряда.
Родной дисплей — тоже решил заменить на VATN. Удовольствие — не дешевое, но для себя — того стоит.

Корпус компактный, плата по длине не влезала, пришлось обрезать штатные BNC разьемы.

На самой плате — уже были отверстия для измерительных входов, вот только земли к ним — китайцы почему — то не подвели. Поэтому пришлось чуть счистить маску и поиздеваться над выводами угловых пап XH2.54

На родных стойках и над куском фольгированого текстолита, толщиной 0,1мм — плата заняла свое место в корпусе.

Сверху — экранирующее накрытие из такого же текстолита.

Теперь — питание.
Когда — то коллега подарила мне повер-банк. Дети выломали разьем для зарядки, и она купила новый. Вскрытие показало, что девайс содержит 3 включенные параллельно баночки, а тест на LiitoKala — чуть больше 4 А/ч на каждой. Сам повер-банк не умеет QC, так что без сожаления — пущен на

органы

батарейки.

Батареи были включены последовательно, к ним — добавлена плата защиты на 3S и простенький активный балансир на микросхемах 7660

Вся конструкция — укладена между двумя листами стеклотекстолита.

Проволока, хоть и выглядит сурово, но не сжимает конструкцию, на лишь удерживает все вместе. Батарейки приклеены на двусторонний скотч.

На металлически стойках, (есть и на Али) — аккумуляторный бутерброд — займет свое место выше платы.

Пришла очередь передней панели.
Корпус компактный, плата дисплея встает в нем на всю высоту. Разьем для щупов, GX-16, размещается рядом, в притык.
Все — подгонялось до миллиметра, вручную. Сперва — я вырезал отверстие под дисплей. Про предполагаемому контуру — насверлил отверстия и выломал кусок.

Далее — точно подогнал канцелярским ножом, пластик — очень легко режется.
Сверху и снизу от дисплея — остается много свободного места. Там — разместились планочки со светодиодами и кнопками управления.

Кнопки расположены очень близко, это плата за компактность, но пользоваться ими — вполне удобно.
В Corel draw нарисовал и распечатал переднюю панель. Канцелярским ножом вырезал отверстия индикатора, светодиодов, тумблера питания и разъема.

Потом прогнал это через ламинатор, вырезал отверстия под кнопки, разъем и тумблер и собрал все в кучу.
Вот так выглядит передняя панель уже в корпусе

Теперь — зарядное устройство и индикация разряда. схема этого дела — выглядит так:

Зарядное хотелось сделать всеядным, поэтому — только Sepic. Сначала пробовал зделать на MT3608, Kirich уже проводил над ней такие опыты, но чего то эта тема у меня не работала нормально.
После двух убитых МТ-шек — я решил прекратить эксперименты и купил по месту готовый Sepic на основе XL6019, вот такой же, и настроил его на 12,6 вольт. Преобразователь свободно отдает нужные 0,5 А при входном от 5 до 24 вольт.
Осталось только ограничивать ток. За это отвечает усилитель ОР1. Он сравнивает опорные 25мВ с напряжением с шунта R16. И когда ток превышает (0,025В / 0,05Ом) = 0,5А — притормажывает преобразователь, через VD1 и R2 — напряжение поступает на 5-ю ногу микросхемы преобразователя. Узел на ОР2 — выключает желтый светодиод и перестает шунтировать зеленый, когда зарядный ток падает менее 0,1 от ограничения (50 мА).

Транзистор Т1 — предотвращает разряд аккумулятора через цепи контроля тока и не мешает заряду, так как падение напряжения на нем — мизерное.
Узел на ОР3 — зажигает желтый светодиод, когда нпряжение падает ниже 11,1 вольт (3,7 на банку, 30%). А ОР4 — красный, когда ниже 10,5 вольт (3,5 на банку, 10%).
Вот так выглядит эта плата:

Сама плата нарисована в программе Sprint layout и распечатана на прозрачной пленке для лазерного принтера, в режиме негатив.
Далее — нужна заготовка из фольгированого стеклотекстолита. Ее нужно почистить «нулевкой» и хорошо обезжирить. Я использую фейри. Аромат — не важен :)

Потом — нужен кусочек пленочного фоторезиста. Скоблим его уголок ножом и отделяем пленку с ВНУТРЕННЕЙ стороны рулона.


Прикладываем фоторезист липкой стороной к фольге. Делать это — легче под водой, ее проще выдавить чем пузырьки воздуха. Полученную заготовку вкладываем между слоями бумаги и прогоняем через холодный ламинатор, чтобы полностью убрать воду.

Теперь греем ламинатор, и прокатываем заготовку, так же между листами бумаги, еще 2-3 раза.
Дальше — проявление. Укладываем фотошаблон на источник ультрафиолета, сферху — нашу заготовку.

У меня — девайс из старого сканнера. 4 лампы по 8 Ватт и таймер. Время просвечивания — минута и 40 секунд.
Должно получится вот так:

Теперь, на чашку воды бросаем 0,5 ч.л. каустической соды, с заготовки снимаем верхнюю пленку и бросаем ее в раствор.

Секунд через 10 начинаем водить по плате старой зубной щеткой. аккуратно, без излишнего усилия. Заканчиваем промывку СРАЗУ ЖЕ, как смоется весь незасвеченый фоторезист, иначе можно смыть то, что не нужно :)
Готовим раствор для травления: 4 ч.л. с верхом лимонной кислоты, 1 ч.л. с верхом кухонной соли и 200 мЛ перекиси водорода.

Минут через 20-30 получается такая красота

Готовим раствор из кружки воды и 3-4 ч.л. каустической соды, кладем туда вытравленную плату, что бы облез фоторезист. получится такое:


Лудим плату, я предпочитаю классический способ, намазать фольгу флюсом и поводить паяльником, и паяем компоненты.

Готовая плата — занимает свое место на самом верху этажерки

Для подключений — использованы как обжатые «мамы», так и нет.
Очень рекомендую вот такой кримпер.

Устройство — готово к использованию:

Потребляет аппарат около 200мА, так что аккумуляторов хватит очень на долго :)

UPD: в комментариях было несколько вопросов по поводу дисплея.
Я купил его в украинском магазине. Белого сейчас нету в наличии, но можно выбрать другой цвет.
Просто так поменять дисплей нельзя. Kirich уже описал все ньюансы в своем обзоре.
Попробую чуть углубиться в эту тему. Давайте, глянем схему:

Рисуночек слева — это так организовано подключение питания, установки контраста и подсветки в приборе.
По середине — самый обычный стандартный LCD и как регулировать ему контраст. Перемычки J1, J2, J3 могут отсутствовать, а могут и быть замкнуты дорожкой или каплей припоя. К слову, в комплектном дисплее — они отсутствуют. Если Вы установите в девайс свой дисплей, убедитесь в отсутствии перемычек подсветки, иначе Вы замкнете накоротко источник отрицательного напряжения. Кроме того, скорее всего, нужно будет добавить резистор, что бы вытянуть контрастность.
Справа — VATN дисплей. Если Вы просто установите его вместо стандартного, к подсветке будет приложено 10вольт. Кроме того, для регулировки контраста необходимо -5 вольт. Источник отрицательного напряжения — уже есть в дисплее. На рисунке показано, как нужно подключать регулятор контраста.
А теперь — вернемся к моему прибору.

Как видно, к родной плате я подключил только питание, 3 линии команд и 4 линии данных.
Для работы подсветки, прямо на дисплее установлена перемычка между 1-м и 16-м выводами.
На самом же дисплее есть площадки под переменный резистор, к ним сходятся линии от выводов 2, 3 и 15. Я просто впаял туда подстроечный резистор и все заработало сразу же.

Lc метр

Содержание

  • 1 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ LCR Meter XJW01
  • 2 Тестер конденсаторов ESR и не только
    • 2.1 Основные особенности
    • 2.2 Дополнительные особенности
    • 2.3 Новые возможности
  • 3 Схема lc метра на микроконтроллере
    • 3.1 Настройка и функции
  • 4 Измеритель емкости и индуктивности LC100-A для обычных и SMD компонентов
    • 4.1 Особенности прибора при измерении больших и малых ёмкостей
    • 4.2 Особенности прибора при измерении малых индуктивностей
    • 4.3 Удобство пользования
  • 5 Порядок настройки
  • 6 L/C-метр LC200A — измеритель параметров и исправности электронных компонентов
    • 6.1 LC200A как измеритель ёмкости конденсаторов
    • 6.2 Как измерить индуктивность катушки при помощи прибора
    • 6.3 Дополнительная информация
  • 7 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ UNI-T UT603
  • 8 Работа с устройством
  • 9 Измерительные приборы
    • 9.1 Проверка конденсатора мультиметром
    • 9.2 Измерение фактических емкостных значений
    • 9.3 Измерение прибором ESR
    • 9.4 Самодельный С – метр
  • 10 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ LCR M8
  • 11 Высокоточный цифровой LCR метр XJW01
    • 11.1 Специфические измеряемые величины
    • 11.2 Частота, калибровка и подключение
    • 11.3 Удобство пользования

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ LCR Meter XJW01

Характеристики LCR — метра
Диапазон измерения индуктивности 0,05 мкГн – 2000 Гн
Диапазон измерения сопротивления 0,0001 Ом – 20 МОм, разрешение 0,1 мОм
Диапазон измерения емкости 1 пФ – 20000 мкФ, разрешение 0,01 пФ
Точность 0,3 – 0,5 %
Частота тестового сигнала 100 Гц, 1 кГц, 7,831 кГц
Тестовое пиковое напряжение 1,75 В
Функция калибровки автоматическая
Выходное сопротивление 40 Ом
Функции прибора На дисплее отображаются:основные параметры:
КФ: конденсаторы в параллельном режиме
Cs: режим емкости линии
LP: индуктивность параллельный режим
Ls: линейный режим индуктивности
Rp: сопротивление в параллельном режиме
Rs: режим сопротивления линиидополнительные параметры:
Q: коэффициент качества (добротность)
D: коэффициент диэлектрических потерь
θ: угол сдвига фаз
Rp: эквивалентное параллельное сопротивление
ESR: эквивалентное последовательное сопротивление
Xp: эквивалент шунтирующих реакторов
Xs: эквивалентное последовательное реактивное
Общие характеристики
Цвет серый
Дисплей LCD 2004
Диапазон температур хранения 0°С — +40°С
Питание AC 110 – 220 В 50 Гц 0,45 Вт
Габариты 150 мм х 115 мм х 35 мм
Вес нетто 510 г
Комплектация многофункциональный измеритель XJW01 – 1 шт
щуп с зажимами типа «крокодил» – 2 шт
адаптер питания – 1 шт
подставка – 1 шт

Тестер конденсаторов ESR и не только

Бескорпусный тестер транзисторов из Китая, LCR-метр M8, выполнен на микроконтроллере mega328. Цена на набор раза в три ниже, чем на изготовленный в корпусе. Он позволяет производить измерения, таких величин, как индуктивность, ёмкость, характеристики диодов, биполярных и мосфет (MOSFET) транзисторов.

Тестер LCR метр mega328 имеет точность измерения в сотые доли величин и достаточна для радиолюбителей, разработчиков и центров обслуживания. Для удобства сборки малогабаритные компоненты и микросхемы уже размещены на плате. В наборе имеются все необходимые компоненты.

Основные особенности

ESR тестер mg328 M8 идентифицирует неизвестные компоненты, что особенно важно при ремонте электроники и отображает на экране их схемотехническое обозначение. На дисплее сразу же выводятся основные характеристики

Диагностике подлежат линейные и нелинейные устройства их главные характеристики. Расположение выводов определяется автоматически. Важно, что прибором удобно проверять компоненты гибридного поверхностного монтажа — SMD.

Дополнительные особенности

  • автоматическая самонастройка;
  • проверка силовых транзисторов с определением их структуры;
  • диагностика полевых транзисторов с каналами любого типа и изолированным затвором;
  • определение характеристик транзисторов JFET, двойных диодов, тиристоров и симисторов;
  • снятие параметров транзисторов Дарлингтона с высоким пороговым напряжением.

Новые возможности

При измерении емкости электролитических и обычных конденсаторов на дисплее с точностью до 0,01 Ом отображается их эквивалентное сопротивление. При диагностике диодов выводится важный параметр — падение напряжения на диоде. Если в транзисторе есть защитный диод, то дисплей отображает его. Тестер показывает сопротивление сразу двух плеч потенциометров и подстроечных резисторов. При проверке светодиодов определяется напряжение их включения. Изображение на экране можно корректировать. Дополнительные подсказки могут быть отключены. Для проверки диодных мостов требуется одно измерение.

Схема lc метра на микроконтроллере

Настройка и функции

   Сердцем устройства является микроконтроллер PIC18F2520. Для стабильной работы генератора в качестве С3 и С4 лучше использовать неполярные конденсаторы либо танталовые. Реле можно использовать любое, соответствующее по напряжению (3-5 вольт), но желательно с минимально возможным сопротивлением контактов в замкнутом положении. Для звука используется буззер без встроенного генератора, или обычный пьезоэлемент.

   При первом старте собранного устройства, программа автоматически запускает режим настройки контраста дисплея. Кнопками 2/4 необходимо установить приемлемый контраст и нажать кнопку OK (3). После выполнения данных действий устройство следует выключить и включить заново. Для некоторой настройки работы измерителя в меню есть раздел «Setup». В подменю «Capacitor», необходимо указать точный номинал используемого калибровочного конденсатора (С_cal) в пФ. Точность указанного номинала напрямую влияет на точность измерения. Контролировать работу самого генератора можно с помощью частотомера в контрольной точке «B», однако лучше использовать уже встроенную систему контроля частоты в подменю «Oscillator».

   С помощью подбора L1 и С1, необходимо добиться стабильных показаний частоты в районе 500-800 кГц. Большая частота положительно влияет на точность измерения в тоже время с ростом частоты может ухудшаться стабильность генератора. Частоту и стабильность генератора, как я уже сказал выше, удобно мониторить в разделе меню «Oscillator». При наличии внешнего калиброванного частотомера можно выполнить калибровку частотомера LC-метра. Для этого необходимо подключить внешний частотомер к контрольной точке «B» и с помощью кнопок +/- в меню «Oscillator» подобрать константу «K» таким образом, чтобы показания обоих частотомеров совпадали. Для корректной работы системы отображения состояния батареи питания, необходимо настроить резистивный делитель, построенный на резисторах R9, R10, после чего установить перемычку S1 и записать значения в поля раздела «Battery».

Измеритель емкости и индуктивности LC100-A для обычных и SMD компонентов

Цифровой измеритель емкости конденсаторов и индуктивности катушек LC100-A, укомплектован щупами для SMD. Его следует купить для измерения параметров с точностью до 1%. Небольшая цена прибора объясняется бескорпусным вариантом поставки. Для получения максимальной точности оба параметра измеряются на 2-х диапазонах.

Особенности прибора при измерении больших и малых ёмкостей

При работе с высокочастотной техникой часто требуется измерить малые ёмкости. Нижний предел измерений равен 0,01 пФ и позволяет оценить паразитные ёмкости между дорожками плат, сдвоенных проводов и коаксиальных кабелей. Максимальная измеряемая ёмкость на этом диапазоне равна 10 мкФ. Цифровой измеритель емкости и индуктивности LC100-A позволяет измерять большие ёмкости — до 100 мФ.

Обратите внимание: в России миллифарадами не пользуются. Приняты микрофарады — мкФ

В инструкции указан предел именно в мФ (1 мФ = 1000 мкФ). Это означает, что можно измерять ёмкости электролитических конденсаторов в пределах до 100 000 мкФ. Обычно для таких измерений требуется некоторое время для зарядки конденсатора, но этот измеритель всё делает быстро. Частота переменного тока, генерируемая прибором для пропускания через конденсатор, автоматически изменяется, в зависимости от диапазона. Этим обеспечивается высокая точность измерений.

Особенности прибора при измерении малых индуктивностей

Приборы, работающие на высоких частотах, содержат множество малых по величине индуктивности катушек. Как и при измерении ёмкости, оптимальное значение частоты пропускаемого тока устанавливается автоматически. Верхний предел измерения индуктивности, равный 100 мГн — значительная величина. 0,1 Гн — серьезные катушки. Индуктивность 0,001 мкГн настолько мала, что прибор может оценить её значение даже у короткого провода.

Удобство пользования

В комплект поставки входят знакомые крокодилы, специальный щуп для проверки SMD-компонентов и шнур USB — mini-USB. Для питания подойдет зарядное устройство либо устройства с USB портом. Переключатель питания находится на торце прибора. Купить LC100-A в Москве можно в складе-магазине либо вы можете оформить заказ на сайте.

Статьи:Измеритель емкости и индуктивности LC100-AВидеообзоры:
Видео обзор LC-измерителя LC100-A

Порядок настройки

  • — Измерить напряжение питания микроконтроллера (выводы 19 – 20). Это опорное напряжение “V.ref”
  • — Измерить напряжение до резистивного делителя = U1
  • — Измерить напряжение питания после делителя = U2
  • — Рассчитать коэф. деления “С.div” = U1/U2
  • — Внести полученные цифры в соответствующие разделы меню сохраняя их нажатием кнопки «ОК».

   Также внести напряжения “V.max” – максимальное напряжение батареи питания (заполнены все сегменты отображаемой батарейки) и соответственно “V.min” – минимальное напряжение батареи питания (все сегменты батарейки погашены, прибор сигнализирует о необходимой смене или заряде батареи питания). Значения напряжения питания для отображения промежуточных сегментов на пиктограмме батарейки, будут рассчитаны автоматически после внесения информации о “V.max” и “V.min”.

L/C-метр LC200A — измеритель параметров и исправности электронных компонентов

Если купить LC метр LC200A, то вопрос о том, как измерить индуктивность катушки в домашних условиях отпадает. Это ещё и измеритель ёмкости конденсаторов. Простой на вид прибор имеет точность измерения 1%. Только на верхнем диапазоне значение равно 3%.

LC200A как измеритель ёмкости конденсаторов

Конденсатор имеет проходное сопротивление — важный параметр. Как и при измерении индуктивности прибор имеет разную частоту внутреннего генератора на двух диапазонах: 0,01 пФ — 10 мкФ и 10 мкФ — 100 мФ. Следует учесть, что 1 мФ = 1000 мкФ. Надо помнить, что прибор не имеет защиты от подключения заряженных конденсаторов.

Как измерить индуктивность катушки при помощи прибора

Точность измерения катушки индуктивности сопряжена с трудностями показа малых значений. Она обеспечивается встроенным генератором с частотой 500 Гц — 50 кГц, покрывающей два диапазона: 0,001 мкГн — 100 мГн и 100 мГн — 100 Гн. Чувствительность к малой индуктивности, которую следует учитывать даже у прямых проводников, важна при диагностике высокочастотных и импульсных схем. Низкий порог обнаружения прибора LC200A позволяет её оценить. Большие измеряемые значения требуются для прозвонки трансформаторов питания, индуктивных фильтров и катушек микроволновых печей.

Дополнительная информация

Перед новым измерением требуется всего лишь нажать кнопку обнуления. Если при измерении ёмкости показания прибора нестабильны, то это означает, что частотные характеристики конденсатора крайне низкие. 

Жидкокристаллический экран с подсветкой экономичен. Питание LC тестера осуществляется тремя способами: через разъём mini-USB, от 4 батареек АА на 1,5 В или от блока питания на 5 В

Обратите внимание на наличие откидной подставки.

Заказав тестер LC200A у нас на сайте можете быть уверены, что он исправен. Все приборы проходят предварительное тестирование.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ UNI-T UT603

Основные характеристики измерителя RLC
Выбор пределов измерений ручной
Индуктивность 2 мГн / 20 мГн / 200 мГн / 2 Гн / 20 Гн ± (2 % + 8)
Сопротивление 200 Ом / 2 кОм / 20 кОм / 200 кОм / 2 мОм / 20 мОм ± (0,8 % + 1)
Емкость 2 нФ / 20 нФ / 200 нФ / 2 мкФ / 20 мкФ / 200 мкФ / 600 мкФ ± (1 % + 5)
Тест диодов есть
Тест транзисторов есть
Звуковая прозвонка цепей на проводимость есть
Индикатор низкого заряда батареи есть
Функция «Data Hold» (удержание данных) нет
Общие характеристики
Цвет красный и серый
Дисплей 3½ (1999) разрядный ЖК дисплей, 61 мм ×32 мм
Диапазон температур хранения -20°С — +50°С
Диапазон рабочих температур 0°С — +40°С
Питание батарейка типоразмера 6F22 9 В
Габариты 172 мм х 83 мм х 38 мм
Вес нетто 310 г
Комплектация измеритель RLC UNI-T UT603 – 1 шт
батарейка типоразмера 6F22 – 2 шт
измерительный зажим типа крокодил – 1 шт
инструкция по эксплуатации – 1 шт

Работа с устройством

   Ещё меню lc-метра содержит разделы Light, Sound, Memory. В разделе Light есть возможность включить либо отключить подсветку LCD. Раздел Sound, для вкл/откл звука. В разделе Memory можно посмотреть результаты последних 10 измерений, а также (для новичков) увидеть полученный результат в разных единицах измерения. Назначение кнопок описывают пиктограммы, размещенные в нижней части экрана.

  • (F) – “Function” переход в меню Setup
  • (M) – “Memory” сохранение результатов измерения в памяти
  • (☼) – “Light” вкл/откл подсветки
  • (C) – “Calibration” калибровка

   Главный экран содержит условную шкалу погрешности в измерениях, которую необходимо контролировать и в случае необходимости своевременно выполнять калибровку.

Измерительные приборы

Как и любую радиодеталь, ёмкостной элемент можно измерить. Для этого используются измерительные приборы: омметр или мультиметр. В ходе работы неисправный конденсатор можно определить на вид ещё до того, как выпаивать из платы.

Проверка конденсатора мультиметром

Выявить обрыв детали по снижению или полному отсутствию ёмкости можно мультиметром с опцией измерителя емкости электролитических конденсаторов. Если в результате проверки ёмкость отсутствует или понижена, элемент цепи не исправен.

Когда ёмкость детали больше 20 мкФ, то проверку поможет провести любой тестер в режиме омметра. Выставляется предел измерения «200 кОм».  После выпаивания для снятия остаточного заряда выводы детали кратковременно закорачиваются между собой.

На выводах измеряется сопротивление, которое будет расти в зависимости от ёмкости. Чем она меньше, тем быстрее растёт величина сопротивления и достигает бесконечности. Бесконечность показывает полностью заряженный конденсатор. Если этого не происходит, а на дисплее сразу значение бесконечности, значит, у детали есть обрыв.

Важно! При значении ёмкости менее 20 мкФ такой способ не годится. Увеличение сопротивления до бесконечной величины в этом случае происходит быстро, его невозможно заметить

Измерение фактических емкостных значений

Пробой между пластинами происходит в результате внутреннего короткого замыкания. Измерение емкости омметром при этом показывает ноль или некоторое сопротивление, которое не растёт. Даже если чуть увеличивается, то не достигает бесконечности.

При внешнем осмотре такие элементы заметны. У электролитических конденсаторов на верхней части корпуса имеются насечки крестом. При коротком замыкании пластин электролит внутри закипает и выделяет газ. Газ пытается выйти наружу и в этом месте раскрывает деталь. Верхушки неисправных элементов разорваны или вспучены.

Измерение прибором ESR

Для измерения емкости конденсатора для определения увеличения внутреннего сопротивления применяют особый прибор – ESR. При его использовании деталь выпаивать не обязательно.

При заряде или разряде неисправного конденсатора увеличение этого параметра указывает на снижение пикового тока через элемент. Картина такая, как будто в цепи с измеряемым элементом находится последовательно подключенный резистор и вносит задержку.

Это называется эквивалентное последовательное сопротивление – ЭПС. В английском языке – ESR.

Самодельный С – метр

Собрать простой измеритель емкости конденсаторов своими руками можно на интегральной микросхеме серии 155ЛА3.

Схема измерителя ёмкости на микросхемах серии 155ЛА3

На самодельную печатную плату устанавливается микросхема К155ЛА3. Плату предварительно отмывают от грязи и флюса, которые останутся после изготовления. Используемые детали:

  • микросхема К155ЛА3;
  • диоды КД 509;
  • подобранные резисторы 47 кОм;
  • резисторы 11 кОм;
  • конденсатор 0,1 мкФ;
  • подобранные ёмкости: С1 0-50 пФ, С2 0-500 пФ, С3 0-5000 пФ, С4 0-0,05 мкФ.

К выводам присоединяется питание 5 В. На вывод 7 – минус, на вывод 14 – плюс. Выводы считаются от ключа, нанесённого на корпус. Источник питания – 5 В при токе 0.1 А.

Проводники, которые соединяют резисторы с переключателем, выполняются по возможности короче. Переменные резисторы после подбора заменяются постоянными эквивалентами. Настройку выполняют с измерительным прибором, который будет использоваться.

Регулировка сводится к установке максимальных границ каждого диапазона при помощи подбора резисторов 47 К.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ LCR M8

Характеристики LCR — метра
Диапазон измерения индуктивности 0,1 мкГн – 20 Гн
Диапазон измерения сопротивления 0,1 Ом – 50 МОм
Диапазон измерения емкости 25 пФ – 100000 мкФ
Время теста 2 с
Автоматическое определение цоколевки измеряемого компонента да
Определение пригодности конденсатора по параметру ESR да
Напряжение открытия и емкость затвора (для MOSFET) да
Автоматически определяемые компоненты биполярные, полевые транзисторы (PnP, NPN, N-, MOSFET, JFET), диоды и сдвоенные диоды, постоянные и переменные резисторы, конденсаторы, дроссели и катушки индуктивности, тиристоры и симисторы
Определение дополнительных показателей измерение коэффициента усиления и порогового напряжения база-эмитетр биполярного транзистора, измерение обратного тока коллектора транзистора при отключенной базе;
измерение ESR (Equivalent series resistance) — эквивалентное последовательное сопротивление (ЭПС, внутреннее сопротивление) электрических конденсаторов, измерение емкости конденсаторов без демонтажа их из печатной платы, что в значительной степени уменьшает время поиска неисправности, повышает качественные показатели ремонта аппаратуры;
измерение сопротивлений и индуктивностей в широком диапазоне;
измерение транзистора Дарлингтона через высокое пороговое напряжение и высокий коэффициент усиления тока и др.
Общие характеристики
Язык английский, китайский
Дисплей 12864 LCD
Диапазон температур хранения 0°С — +40°С
Потребляемый ток не более 20 мА
Питание 3.7 В аккумуляторная литиевая батарея модель 14500 (входит в комплект) или внешний блок питания 5 В USB-порт
Габариты 73 мм х 71 мм х 15 мм
Вес нетто 100 г
Комплектация многофункциональный тестер LCR метр M8 – 1 шт
аккумуляторная литиевая батарея – 1 шт
тестовые зажимы типа «крокодил» – 1 шт

Высокоточный цифровой LCR метр XJW01

Инструкция XJW01 даёт информацию о точности 0,3%. Минимальная емкость конденсаторов, которую «чувствует» прибор составляет ничтожную величину — 0,1 пФ — ёмкость коротких цепей. Эти параметры исключительно важны при анализе высокочастотных схем и сетей. LCR измеритель XJW01 измеряет не только емкость оксидных конденсаторов и индуктивность, но и может зафиксировать сопротивление от 0,0002 Ом (R провода длиной 1 см).

Специфические измеряемые величины

Измеритель ёмкости оксидных конденсаторов и высокоточный измеритель индуктивности позволяет узнать с высокой точностью величины L и R в параллельном и линейном режиме, а также режим сопротивление линии, что необходимо при работе с кабелями и длинными цепями. К особенностям относится оценка добротности катушек индуктивности, которая имеет решающее значение при настройке ответственных контуров.

Помимо этого измерению подлежит коэффициент диэлектрических потерь и угол сдвига фаз между током и напряжением, которые невозможно узнать при помощи обычного мультиметра. К этим параметром следует добавить эквивалентное параллельное и последовательное сопротивления, эквивалент шунтирующих реакторов и эквивалентное реактивное последовательное сопротивление.

Частота, калибровка и подключение

Высокоточный RLC-метр на микроконтроллере 12C5A60S2, с переключаемой рабочей частотой от 100 Гц до 7, 8 кГц имеет автоматическую калибровку и может производить измерения по методу Кельвина. При этом осуществляется четырехпроводное подключение при помощи экранированных кабелей двух типов. Для измерения параметров радиокомпонентов и цепей можно использовать цифровой мост — digital bridge, входящий в комплект вместе с блоком питания.

Удобство пользования

В комплекте два щупа с зажимами «крокодил» необычны тем, что к губкам соединены два провода. XJW01 автоматически определяет, какой компонент или цепь к нему подключена. Измерение емкости, индуктивности и сопротивления возможно на 16 диапазонах. Для быстрой работы переключение режимов производится не одной, а восьмью кнопками. Источник питания — любой, на напряжение 9-15 В.

Если купить в Москве XJW01 или заказать его, то он будет предварительно проверен. Гарантия прилагается.

RCL-метр XJW01 (корпус и настройка)

[Обзор] Прецизионный LCR-тестер XJW01Подробнее

[Обзор] Прецизионный LCR-тестер XJW01

XJW01 КАЛИБРОВКА. (XJW01 CALIBRATION)Подробнее

XJW01 КАЛИБРОВКА. (XJW01 CALIBRATION)

(ЭПИЛОГ-итог) Miron63 vs XJW01 vs MASTECH (MS8911). Тест + сравнение. Внутрисхемные измерения!Подробнее

(ЭПИЛОГ-итог) Miron63 vs XJW01 vs MASTECH (MS8911). Тест + сравнение. Внутрисхемные измерения!

XJW01 быстрая проверка стабильности контакта в коаксиалеПодробнее

XJW01 быстрая проверка стабильности контакта в коаксиале

XJW01 LCR Meter Review Demonstration and CalibrationПодробнее

XJW01 LCR Meter Review Demonstration and Calibration

Паяльное-11. Сборка LCR метра из Китая, ссылка в описании.Подробнее

Паяльное-11. Сборка LCR метра из Китая, ссылка в описании.

Электронное-7. Каллибровка и тесты LCR метра из Китая.Подробнее

Электронное-7. Каллибровка и тесты LCR метра из Китая.

Про великую страну, Мишку и измеритель иммитанса. Философско-измерительное видео.Подробнее

Про великую страну, Мишку и измеритель иммитанса. Философско-измерительное видео.

XJW01 мостовой тестер LCR. Контакт в коаксиалеПодробнее

XJW01 мостовой тестер LCR. Контакт в коаксиале

✅ Обзор LC-200A — измеритель емкости и индуктивности (LC метр). Диапазон измерений, Калибровка…Подробнее

✅ Обзор LC-200A - измеритель емкости и индуктивности (LC метр). Диапазон измерений, Калибровка...

Популярное

Понравилась статья? Поделить с друзьями:

Это тоже интересно:

  • Xithrone египет инструкция на русском
  • Xithrone 500 mg инструкция по применению на русском
  • Xinjia часы инструкция на русском
  • Xingma ac dc adaptor ty 320 инструкция
  • Ximeijie робот пылесос инструкция на русском языке

  • Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии