Китайские цифровые модули ШИМ контроллеров (PWM) стали заметно доступнее по цене, но правильный выбор модуля, который будет делать именно то что нужно, остаётся актуальным. Вот несколько тестов и советов, которые помогут в процессе подбора подобного устройства избежать ошибок.
Для примера возьмём самый популярный, недорогой и компактный 2-канальный модуль PWM, описанный на Али как «XY-PWM 2-канальный регулируемый генератор импульсов ШИМ с цифровым светодиодным дисплеем».
Это крохотный 2-канальный модуль генератора ШИМ с переменной частотой от 1 Гц до 150 кГц и рабочим циклом от 0% до 100%. Частотой ШИМ и рабочим циклом каждого канала можно управлять независимо с помощью кнопочных переключателей, имеющихся на плате. Модуль может питаться от внешнего источника постоянного тока 5-30 В, но также оснащён и micro-USB 5 В. Он дополнительно предоставляет возможность настраивать определенные параметры импульса извне, через стандартный последовательный COM интерфейс.
Давайте ознакомимся с его основными характеристиками:
- Два независимых ШИМ с переменной частотой и рабочим циклом.
- Параметры настраиваются через последовательный протокол
- Рабочее напряжение: 5 – 30 В постоянного тока.
- Поддерживает micro-USB 5V
- Диапазон частот: 1 Гц ~ 150 кГц
- Точность частоты: около 2%.
- Нагрузочная способность сигнала: выходной ток 8-30 мА
- Выходная амплитуда: 5 В pp по умолчанию
- Рабочий цикл: 0% ~ 100%
Управление модуля имеет три кнопки – SET, UP, DOWN. Быстрое нажатие кнопки SET переключает все четыре параметра (FA1: частота PWM1, DU1: рабочий цикл PWM1, FA2: частота PWM2, DU2: рабочий цикл PWM2), а долгое нажатие позволяет изменять частотный диапазон. Кнопки UP и DOWN можно использовать для изменения текущих параметров.
Обратите внимание, что выбор частоты ШИМ делится на три диапазона:
- XXX (без десятичной точки): наименьшая единица измерения – 1 Гц. Диапазон от 1 Гц до 999 Гц.
- X (одна десятичная точка): Минимальная единица измерения – 0,1 кГц. Диапазон от 0,1 кГц до 99,9 кГц.
- XX (три десятичных знака): наименьшая единица – 1 кГц. Диапазон от 1 кГц до 150 кГц.
Последовательные параметры (скорость 9600 бод):
- Биты данных: 8
- Стоповый бит: 1
- Бит четности: Нет
- Управление потоком: Нет
Формат команды для установки частоты PWM – «S1FXXXT», что означает «Установите частоту PWM1 на XXX Гц (от 001 Гц до 999 Гц). И «S1DXXXT» применимо для установки рабочего цикла (Установите рабочий цикл PWM1 на XXX (001 ~ 100).
- S1: PWM1
- S2: PWM2
- F: частота
- D: Рабочий цикл
- T: знак конца
Конечно можно построить простой генератор ШИМ с помощью таймера 555, но все же для этого потребуется частотомер или осциллограф, чтобы настроить их правильно, а здесь уже всё готово.
Компоненты, расположенные рядом со входом модуля, – это один диод Шоттки SS34 (защита от обратного входного питания) и один стабилизатор напряжения HT7150-1 LDO (5 В / 30 мА). Это позволяет безопасно подавать источник постоянного тока в диапазоне 5-30 В через точки DC IN (VIN + и VIN-). Также можно включить модуль через разъем micro-USB, предпочтительно от источника питания USB или внешнего аккумулятора мобильного телефона. В любом случае, вход питания USB должен быть стандартным, с чистыми 5 В, поскольку на плате нет ничего что могло бы стабилизировать это напряжение. Трехзначный индикатор представляет собой красный светодиодный дисплей с общим катодом (3631AS).
Далее следует пара транзисторов MMBT3904L, вставленных на выводах импульсного выхода микроконтроллера. Тут есть два независимых выходных канала ШИМ, но они используют одну и ту же общую / заземляющую (0 В) линию.
Теперь становится ясно, что каждый транзистор работает как «буфер», который инвертирует фактический сигнал импульсного выхода микроконтроллера. С резистором нагрузки коллектора 620 Ом можно ожидать выходного сигнала с широтно-импульсной модуляцией уровня 5 В, который может управлять внешней нагрузкой с 8 мА максимального тока на канал.
Для теста использовался USB-блок питания. Сначала установили оба канала ШИМ на 25 кГц (50%) и наблюдали за выходным сигналом на осциллографе.
Канал осциллографа 1 (желтый) на PWM1, а канал осциллографа 2 (синий) – на базу Q1 (то есть первый вывод импульсного выхода микроконтроллера).
Возвращаясь к двухканальным сигналам ШИМ заметим, что такое дело будет полезно во многих случаях, таких как управление шаговыми двигателями, управление бесколлекторными двигателями постоянного тока, преобразование постоянного напряжения. Поскольку модуль XY-PWM можно использовать для генерации двух сигналов ШИМ с одинаковой (но переменной) частотой и рабочим циклом, результирующие прямоугольные волны с двухфазным смещением могут сыграть важную роль в чередующихся / фазосдвинутых сигналов.
Согласно описанию, двухканальный ШИМ-модуль даже совместим с серией промышленных двухфазных гибридных шаговых сервоприводов RMCS-111x.
Кстати, разъем встроенного 4-контактного интерфейса напоминает знакомый интерфейс программатора SWIM для микроконтроллеров STM. Чаще всего STM8S003K составляет основу такого двухканального модуля ШИМ.
Другое испытание проводилось с небольшим вентилятором BLDC на 12 В / 100 мА, просто подключили его к каналу PWM1 (25 кГц) двойного модуля PWM (с питанием от БП) через один модуль МОП IRF530 (не логика), как показано на схеме подключения. Использовали обычный метод «фиксированной частоты и переменного рабочего цикла» для управления скоростью вентилятора, и установка показала отличную производительность.
Вот выходной сигнал ШИМ 20 кГц (50%) (x2), обработанный двухканальным модулем ШИМ и снятый USB-осциллографом.
Выходное напряжение ШИМ модуля находится на уровне 5 В, потому что транзисторы драйвера питаются от встроенного стабилизатора напряжения 5 В / 30 мА LDO. И простое вырезание одной дорожки сделает ее готовой к выходам ШИМ более высокого уровня.
После этого можно подать более высокое напряжение между контактными площадками V + и GND. Если это вход 12 В, то получим выходы ШИМ с уровнем 12 В, но убедитесь что есть 100% изоляция между V + и дорожкой 5 В, иначе схема может сгореть. В общем подобный блок прекрасная основа более сложных приборов и электрических исполнительных механизмов.
ОПИСАНИЕ
Высокая точность ШИМ Частотомер XY-ШИМ с ЖК-дисплеем Частота генератора сигналов метр панели модуля Поддержка TTL выхода
BRT XY-PWM
Основные особенности
-LCD экран с подсветкой, ясно частотного сигнала отображения
-PMW выходного сигнала и коэффициент заполнения (0% -100%) являются регулируемыми.
Высокая точность, широкий диапазон частот выходного: 1Гц до 150 кГц.
-Может быть установлен на 4 типов частотных диапазонов: 1Hz ~ 999Hz, 1.00kHz ~ 9.99kHz, 10.0kHz ~ 99.9kHz, 1 кГц ~ 150 кГц
-Поддержка связи TTL порт для SCM или микропроцессора.
Технические параметры
Описание функции
Подключение цепи
ШИМ генератор сигналов PWM Frequency Meter Пакет, включающий:
1 лот х ШИМ измеритель частоты XY-PWM (2 единицы)
1 Se х Professional легко для понимания Руководства пользователя
Удовлетворенность клиентов
Пожалуйста, не стесняйтесь обращаться к нам, если у вас есть какие-либо вопросы или заботы перед или после вашей покупкой. Мы стремимся к удовлетворению 100%.
Оплата
Есть много способов оплаты доступны на DHgate.com, таких как кредитные карточки, в реальном масштабе времени банковские трансферы, автономные компенсации (банковские трансферы). Вы можете выбрать метод, который является наиболее удобным для вас. Для защиты ваших интересов, то оплата будет временно хранятся на DHgate, и не будет выпущен к нам пока вы не получите ваш заказ и доволен.
Перевозка
1.Shipping Стоимость:
Выберите количество, а затем нажмите страну с помощью логистических методов на странице.
2.Go на следующей странице, вы можете увидеть стоимость доставки детали каждых логистических методов в рамках вашего выбора.
3. Пункт Время обработки: Время обработки для конкретного заказа зависит от типа продукта и на складе. Главным образом, время обработки может быть от 3 до 15 рабочих дней.
Политика возврата
Если вы хотите обменять полученные детали, вы должны связаться с нами в течение 3 дней с момента получения заказа. И вы должны оплатить дополнительные сборы доставки груза и возвращенные детали должны храниться в их первоначальном состоянии.
Обратная связь
Так как ваша обратная связь очень важна для нашего бизнеса, мы искренне приглашаем вас оставить положительные отзывы для нас, если вы удовлетворены нашей продукции и услуг. Он как раз вас 1 минуту. Спасибо!
Description
The PWM Signal Generator Module combines an accurate 0-150kHz PWM generator with pushbutton controls and LCD display that shows frequency and duty cycle.
PACKAGE INCLUDES:
- XY-LPWM or HW-753 PWM Signal Generator Module
KEY FEATURES OF PWM SIGNAL GENERATOR MODULE:
- 0-150kHz output frequency range
- 0-100% duty cycle
- 3-30V operation and output pulse amplitude
- Simple pushbutton interface
- LCD display of frequency and duty cycle
- 5-30mA maximum current output
- Serial TTL interface, 3.3V logic compatible.
This is a nice little module that can be used as a flexible square wave generator for conducting experiments, testing and controlling devices that require a PWM input. Having the display and simple pushbutton interface makes it easy to set. Adding an output driver allows it to drive motors, solenoids, servos, dim LEDs and other pulse applications.
Theory of Operation
The reverse engineered schematics show the basic layout of the module.
These modules are built with either a Holtek N76E003AT20 or ST Micro STM8S003F3P6 microcontroller and functionality is the same in either case.
The VIN+ input voltage powers a 3.3V linear regulator that supplies 3.3V to the logic circuits on the module.
The microcontroller accepts inputs form the pushbuttons or the TTL serial interface and generates the PWM output signal by using the built-in oscillator and timing circuits of the microcontroller.
The PWM output pin on the microcontroller drives an NPN MMBT3904 type transistor which in turn drives the PWM output pin of the module. The transistor has a series 1K resistor tied to VIN+, so the PWM signal will swing between ground and the module supply voltage on the VIN+ pin.
The 1K resistor limits the maximum available drive current which will vary depending on the VIN+ input voltage and range from about 5mA up to 30mA. This output is suitable fro driving a logic input or to drive a MOSFET transistor if you need to increase the module drive capability. There is also an easy hack to boost the current capability up to about 100mA which is explained down below in Our Evaluation Results section.
Besides the VIN power input connector and PWM output connectors described below, there is a connector on the back of the board labeled J3 which provides access to the programming port of the microcontroller. This is only of interest to anyone thinking about hacking the software on the module.
Note that we may ship boards with fabs marked XY-LWPM or HW-753. The minor functionality differences are noted down below under ‘Our Evaluation Results”
Powering the Module
The module can operate from 3 to 30V power input on the VIN+ connections. The two connections are internally connected and only one needs to be used. Same for VIN- which is the ground connection.
The VIN+ input has a Schottky reverse polarity protection diode. The module logic circuits are powered from a 3.3V regulator, so the VIN+ voltage is usually selected to set the amplitude that is needed for the PWM output. If the PWM output will be used with 5V logic, the module should be powered from 5V.
Below 4V, the LCD backlight will start to dim, but the module will continue to work down to 3V.
The module draws about 20mA from the power source under typical 5V operation.
Setting PWM Frequency
The frequency of the PWM output can be set over the range from 0Hz to 150kHz by pressing the FREQ+ and FREQ- buttons. Holding the buttons down accelerates the frequency change.
When the output is being adjusted, the display shows SET. When no adjustments are being made, it displays OUT.
The current frequency is shown in the upper half of the display with the decimal point indicating the range that is being displayed.
If the display shows XXX, the value is in Hz. A display of 500 indicated 500Hz. The value can be adjusted in increments of 1Hz over the range of 0-999Hz.
If the display shows X.XX, the value is in kHz. A display of 1.00 indicates 1kHz. The value can be adjusted in increments of 10Hz over the range of 1.00kHz – 9.99kHz.
If the display shows XX.X, the value is in tens of kHz. A display of 10.0 indicates 10kHz. The value can be adjusted in increments of 100Hz over the range of 10.0kHz – 99.9kHz.
If the display shows X.X.X, the value is in hundreds of kHz. A display of 1.0.0 indicates 100kHz. The value can be adjusted in increments of 1kHz over the range of 100kHz – 150kHz. This use of multiple decimal points isn’t the most intuitive way to display the value, but it’s not too bad once you get used to it.
Setting PWM Duty Cycle
The duty cycle can be set over the range of 0-100% by pushing the DUTY+ and DUTY- buttons. Holding the buttons down accelerates the duty cycle change.
The current duty cycle is shown on the bottom half of the display with a % sign after it.
SERIAL CONTROL INTERFACE
The module has a serial port which provides control over the basic functionality of the module including setting the frequency and duty cycle as well as reading back the current settings.
The serial port is 3.3V compatible, so if using with a 5V MCU, you will need to use a logic level shifter on the module RX line to avoid possible damage.
Communications use 9600 baud rate. As with any serial port, the TX/RX lines are cross-connected, so the MCU TX line connects to the module RX and the MCU RX line connects to the module TX. GND connects to the MCU ground and is not needed if the module power and ground are coming from the MCU.
The communications protocol is very basic as described below.
Setting Frequency
Fxxx = Set Frequency
To set the frequency you send the data in the same format that it is displayed on the LCD proceeded by an upper case ‘F’.
‘F100‘ = Frequency set to 100Hz
‘F1.00‘ = Frequency set to 1kHz
‘F10.0‘ = Frequency set to 10kHz
‘F1.0.0‘ = Frequency set to 100kHz
The module responds with ‘DOWN‘ if the command was understood and ‘FAIL‘ if it wasn’t, such as if the command was formatted incorrectly.
Setting Duty Cycle
Dxxx = Set Duty Cycle
To set the duty cycle, you send the desired duty cycle preceeded by an upper case ‘D’.
‘D050‘ = Duty cycle set to 50%
Reading Current Settings
To read the current settings, you send a lower case ‘read‘.
The module will respond with the frequency and duty cycle like this:
F1.00
D050
or it may report
F=1.00KHz D= 50%
Module Connections
The connections to the module are straightforward with power on the upper left side, serial connections on lower left side and PWM output on the right side.
Note that the VIN+, VIN-, PWM and PWM GND connections have two connection points each. These are all connected internally, so only 1 pin of each needs to be connected. The grounds are also all in common.
- VIN+= Power 3 to 30V (x2)
- VIN- = Ground (x2)
- PWM = PWM Output (x2)
- GND = PWM Ground (x2)
Serial Port (labeled on backside)
- GND = Serial Ground
- TXD = Transmit Data out of the module. Connects to MCU RXD
- RXD = Receive Data into the module. Connects to MCU TXD
Module Assembly
The module has 4 M2 size holes in the four corners for mounting if desired.
This module does not come with any headers, but they can be ordered separately if needed.
OUR EVALUATION RESULTS:
These modules have a nice price/performance ratio and have good potential for embedding into a number of different applications.
The LCD screen has a downward viewing angle. This works especially well when mounted in a typical horizontal orientation where you are viewing the screen at a bit on an angel from the button side of the module but is less optimal if viewing the module straight on. The screen is not viewable at a downward angle.
Note that there are at least 3 flavors of this module on the market. The behavior is mostly the same, but there are some differences which are noted here. We may ship modules labeled either XY-LPWM or HW-753. We do not ship the LPWM as the serial port is non-functional on the ones that we have tested.
Modules with the marking XY-LPWM
- Pressing and holding the FREQ or DUTY buttons cause the output of the module to change as the display changes
- Serial read will return with the data formatted like this:
F1.00
D050 - Bad serial commands report ‘FAIL’
Modules with the marking HW-753
- Pressing and holding the FREQ or DUTY buttons cause the output of the module to change as the display changes
- Serial read will return with the data formatted like this:
F=1.00KHz D= 50% - Bad serial commands report ‘FALL’, but not in all cases.
Modules with the marking LPWM
- Pressing and holding the FREQ or DUTY buttons do not cause a change on the output until the button is released. The output then changes after about 1 second delay.
- Serial port does not appear to be operational.
Output Drive Limitations
The most likely issue to run into with these modules is trying to drive too large a load and have the output amplitude decrease too much due to the voltage drop through the 1K resistor R2. This resistor is selected to provide safe operation over the wide input voltage range. At 30V, it can pass 30mA and dissipate up to 0.9W which is why it is a physically large resistor.
For driving a logic input, this is not an issue since the current requirements are small, but if you are trying to get a little more drive from it without having to resort to hanging a MOSFET on the output there are some things you can do.
For a dedicated application where you know what voltage you will be using it with, such as 5V, R2 can be replaced or paralleled with a lower value resistor to increase the current handling capability and decrease the voltage drop through it.
The maximum current limitation depends on the current capability of the small transistor which is typically a MMBT3904 that can handle up to 200mA max continuous but is best kept down around 100mA to be on the safe side. A 50 ohm 1/2W resistor would work in this case to provide up to 100mA of drive at 5V.
To really boost the output, you can hang something like the High-Power Dual MOSFET module on the output.
Output Accuracy
The accuracy is pretty good. On a sample basis we measured the following.
- 100Hz / 50% duty cycle measured 100.86Hz with 50.01% / 49.99% duty cycle
- 1kHz / 50% duty cycle measured 1.01kHz with 49.98% / 50.02% duty cycle
- 10kHz / 50% duty cycle measured 10.09kHz with 49.82% / 50.18% duty cycle
- 150kHz / 50% duty cycle measured 152.233kHz with 47.24% / 52.76% duty cycle
Below are some O’scope waveform captures showing typical performance at these same frequencies.
XY-LPWM 100Hz Scope Capture
XY-LPWM 1kHz Scope Capture
XY-LPWM 10kHz Scope Capture
XY-LPWM 150kHz Scope Capture
Example Using the PWM Signal Generator Serial Control Interface
The program below is very simple and just passes characters between your computer and a MCU such as a Mega 2560 or Uno board which then passes the characters to and from the PWM Signal Generator module.
It uses SoftSerial to provide the serial port for the PWM Signal Generator module so that it will work with any MCU even if it only has one serial port. In our setup, we are actually using the Mega 2560 Pro which does have 4 hardware serial ports, one of which could have been used instead. We are using pins 10 & 11 for the SoftSerial port so that it will work with the Mega 2560 and also work with the Uno and most Arduino boards.
Connect the module RXD to the MCU pin 11 and the module TXD to MCU pin 10
Connect VIN+ to the MCU 5V and VIN- to the MCU ground.
Note that the module RXD pin needs to have the incoming signal level shifted from 5V down to 3.3V to avoid possible damage. This can be done with a logic level shifter or a simple resistor voltage divider network.
Once the program is downloaded, open the Serial Monitor Window and ensure it is set for 9600 baud and also select ‘No Line Ending‘ or else the module will not recognize the command that you are sending it.
You can type the command that you want to send to the module in the upper window and see what the module module responds with in the main window. The MCU echos the command it receives followed by the response of the PWM module.
Valid Commands:
- Fxxx, Fx.xx, Fxx.x or Fx.x.x = Set the frequency
- Dxxx = Set the duty cycle
- read = Read current settings
Note that commands to set the frequency like F100 or duty cycle like D050 must be uppercase. To read the current settings the read command must be lowercase for no apparent reason whatsoever. Press enter to send the command.
An example output is shown here to the right and you should see the LCD display update with the new values. In this case the commands typed in and sent were F1.00, D050, read
To see what the actual PWM output is doing, you will need an O’scope or frequency counter. Alternatively you can wire an LED with a 1K series resistor across the PWM output and keep the frequency down in the 1-10Hz range so you can see the LED flash rate change. Be sure to keep the series resistor value fairly high to avoid accidentally overloading the PWM output.
PWM Signal Generator Control Test Program
/* Simple program to exercise the PWM Module serial port Uses hardware serial to talk to the host computer and software serial for communication with the PWM module for compatibility with any MCU Connections MCU 5V to module VIN+ MCU GND to module VIN- MCU D11 to module RXD using a logic level shifter or voltage divider MCU D10 to module TXD When a command is entered in the Serial Monitor on the computer, the MCU will relay it to the PWM module and echo it to the Serial Monitor window. Note that frequency and duty cycle are upper case i.e. 'F100' or 'D050' The 'read' query on the other hand is lower case. Ensure that Serial Monitor Window is set for 9600 and 'No line ending' Any characters returned from the module will be displayed in the Serial Monitor Window. Uses Softserial.h library. Can use hardware serial port if MCU supports it */ #include <SoftwareSerial.h> SoftwareSerial SoftSerial(10, 11); // RX | TX pins. Can be reassigned if needed const long BAUDRATE = 9600; // Baud rate of the XY-LPWM module char c = ' '; // Character being transmitted //=============================================================================== // Initialization //=============================================================================== void setup() { SoftSerial.begin(BAUDRATE); // Init soft serial object Serial.begin(9600); // Init hardware serial Serial.println("PWM Module Serial Test"); Serial.println("Enter 'Fxxx', 'Fx.xx', 'Fxx.x' or 'Fx.x.x' to set frequency"); Serial.println("Enter 'Dxxx' to set duty cycle"); Serial.println("Enter 'read' to get current settings"); } //=============================================================================== // Main //=============================================================================== void loop() { // Watch for any characters returned from module if (SoftSerial.available()) { c = SoftSerial.read(); if (c=='F' || c=='D') Serial.write(' '); // Add space between commands Serial.write(c); } // Read char from the Serial Monitor and send to the XY-LPWM module if (Serial.available()) { c = Serial.read(); SoftSerial.write(c); Serial.write(c); // Echo character typed to serial monitor window } }
BEFORE THEY ARE SHIPPED, THESE MODULES ARE:
- Sample inspected and tested per incoming shipment
Notes:
- The module may have solder flux on the pins of the LCD module. It is not recommended to clean as the cleaning fluid can easily get under the LCD module where it will be optically visible as a blotchiness in the backlighting and it can be difficult or impossible to remove.
Technical Specifications
Operational Ratings | ||
Vcc | Range | 3 – 30V (3.3 or 5V typical) |
Frequency | Specified Range | 0 – 150kHz |
Duty Cycle | 0 – 100% | |
PWM Pulse Amplitude | Same as VIN+ | |
Dimensions | L x W x H | 52 x 32 x 10mm (2.05 x 1.26 x 0.39″) |
Datasheets | Nuvoton microcontroller | N76E003 |
ST Micro microcontroller | STM8S003F3 | |
Holtek LCD controller | HT1621 |
Обычно генераторы сигналов представляют собой оборудование, которые стоит несколько сотен долларов, но в зависимости от ваших потребностей, вы также можете использовать гораздо более дешевые решения, такие как плата лаборатории электроники PSLab ($65) или плата Arduino для генерации сигнала.
Также существует другой вариант приобрести ультра-дешевый генератор сигналов, такой как XY-PWM1, который можно найти на ICStation всего за $4.19. Его функции ограничивается ШИМ импульсами от 1 Гц до 150 кГц с диапазоном напряжения от 3,3 до 30 В.
Технические характеристики XY-PWM1:
- ЖК-дисплей, показывающий частоту и коэффициента заполнения
- Диапазон напряжения – DC 3.3 В — 30 В
- Диапазон частот
- Нормальный режим: от 1 Гц до ~ 150 кГц
- Точный режим: от 1 Гц до ~15 кГц
- Точность частоты: 2%
- Точность коэффициента заполнения
- 1% в нормальном режиме
- 0.1% в точном режиме
- Диапазон коэффициента заполнения – от 0.00% до -100%
- Выходной ток – около 5-30 мА
- Размеры – 79 x 43 x 37 мм
- Диапазон температур – от -40℃ до ~85℃
- Относительная влажность – от 0% до ~95% без конденсации
В нем нет определенной кнопки для выбора режима, но скорей всего, вам просто нужно использовать комбинацию короткого и длинного нажатия, чтобы выбрать нужный режим, а с помощью потенциометра можно настроить коэффициент заполнения и частоту.
Типичный рабочий процесс выглядит следующим образом:
- Подключить к источнику питания
- Для переключения в нормальный или точный режим нажмите на вращающий переключатель и держите его около секунд 10
- Чтобы установить частоту нажмите кратковременно на вращающий переключатель и путем прокрутки измените его значение
- Чтобы настроить коэффициента заполнения нажмите на вращающийся переключатель и держите его 2 секунд
- Чтобы сохранить установленные параметры нажмите на вращающийся переключатель и держите его 5 секунд
- Тестирование
- Отключите питание и подключите нагрузку для использования модуля
Он имеет очень интересный способ отображения частот на дисплее при 100 кГц или выше:
- Отображение на дисплее ‘100’ означает, что выходная частота ШИМ составляет 100 Гц
- Отображение на дисплее ‘1.91’ означает, что выходная частота ШИМ составляет 1,91 кГц
- Отображение на дисплее ‘52.1’ означает, что выходная частота ШИМ составляет 52,1 кГц
- Отображение на дисплее ‘1.3.4’ означает, что выходная частота ШИМ составляет 134 кГц
Данный тип инструмента может использоваться для генерации прямоугольных импульсов, для управления двигателями, а также в качестве диммера или регулятора скорости и так далее.
XY-PWM1 также можно приобрести на Aliexpress или eBay менее чем за $5. Также можно найти аналогичную модуль на Amazon (WHDTS) с практически такими же функциями, за исключением того, что вращающийся переключатель заменен четырьмя сенсорными кнопками..
Выражаем свою благодарность источнику из которого взята и переведена статья, сайту cnx-software.com.
Оригинал статьи вы можете прочитать здесь.
Китайские цифровые модули ШИМ контроллеров (PWM) стали заметно доступнее по цене, но правильный выбор модуля, который будет делать именно то что нужно, остаётся актуальным. Вот несколько тестов и советов, которые помогут в процессе подбора подобного устройства избежать ошибок.
Для примера возьмём самый популярный, недорогой и компактный 2-канальный модуль PWM, описанный на Али как «XY-PWM 2-канальный регулируемый генератор импульсов ШИМ с цифровым светодиодным дисплеем».
Это крохотный 2-канальный модуль генератора ШИМ с переменной частотой от 1 Гц до 150 кГц и рабочим циклом от 0% до 100%. Частотой ШИМ и рабочим циклом каждого канала можно управлять независимо с помощью кнопочных переключателей, имеющихся на плате. Модуль может питаться от внешнего источника постоянного тока 5-30 В, но также оснащён и micro-USB 5 В. Он дополнительно предоставляет возможность настраивать определенные параметры импульса извне, через стандартный последовательный COM интерфейс.
Давайте ознакомимся с его основными характеристиками:
- Два независимых ШИМ с переменной частотой и рабочим циклом.
- Параметры настраиваются через последовательный протокол
- Рабочее напряжение: 5 – 30 В постоянного тока.
- Поддерживает micro-USB 5V
- Диапазон частот: 1 Гц ~ 150 кГц
- Точность частоты: около 2%.
- Нагрузочная способность сигнала: выходной ток 8-30 мА
- Выходная амплитуда: 5 В pp по умолчанию
- Рабочий цикл: 0% ~ 100%
Управление модуля имеет три кнопки – SET, UP, DOWN. Быстрое нажатие кнопки SET переключает все четыре параметра (FA1: частота PWM1, DU1: рабочий цикл PWM1, FA2: частота PWM2, DU2: рабочий цикл PWM2), а долгое нажатие позволяет изменять частотный диапазон. Кнопки UP и DOWN можно использовать для изменения текущих параметров.
Обратите внимание, что выбор частоты ШИМ делится на три диапазона:
- XXX (без десятичной точки): наименьшая единица измерения – 1 Гц. Диапазон от 1 Гц до 999 Гц.
- X (одна десятичная точка): Минимальная единица измерения – 0,1 кГц. Диапазон от 0,1 кГц до 99,9 кГц.
- XX (три десятичных знака): наименьшая единица – 1 кГц. Диапазон от 1 кГц до 150 кГц.
Последовательные параметры (скорость 9600 бод):
- Биты данных: 8
- Стоповый бит: 1
- Бит четности: Нет
- Управление потоком: Нет
Формат команды для установки частоты PWM – «S1FXXXT», что означает «Установите частоту PWM1 на XXX Гц (от 001 Гц до 999 Гц). И «S1DXXXT» применимо для установки рабочего цикла (Установите рабочий цикл PWM1 на XXX (001 ~ 100).
- S1: PWM1
- S2: PWM2
- F: частота
- D: Рабочий цикл
- T: знак конца
Конечно можно построить простой генератор ШИМ с помощью таймера 555, но все же для этого потребуется частотомер или осциллограф, чтобы настроить их правильно, а здесь уже всё готово.
Компоненты, расположенные рядом со входом модуля, – это один диод Шоттки SS34 (защита от обратного входного питания) и один стабилизатор напряжения HT7150-1 LDO (5 В / 30 мА). Это позволяет безопасно подавать источник постоянного тока в диапазоне 5-30 В через точки DC IN (VIN + и VIN-). Также можно включить модуль через разъем micro-USB, предпочтительно от источника питания USB или внешнего аккумулятора мобильного телефона. В любом случае, вход питания USB должен быть стандартным, с чистыми 5 В, поскольку на плате нет ничего что могло бы стабилизировать это напряжение. Трехзначный индикатор представляет собой красный светодиодный дисплей с общим катодом (3631AS).
Далее следует пара транзисторов MMBT3904L, вставленных на выводах импульсного выхода микроконтроллера. Тут есть два независимых выходных канала ШИМ, но они используют одну и ту же общую / заземляющую (0 В) линию.
Теперь становится ясно, что каждый транзистор работает как «буфер», который инвертирует фактический сигнал импульсного выхода микроконтроллера. С резистором нагрузки коллектора 620 Ом можно ожидать выходного сигнала с широтно-импульсной модуляцией уровня 5 В, который может управлять внешней нагрузкой с 8 мА максимального тока на канал.
Для теста использовался USB-блок питания. Сначала установили оба канала ШИМ на 25 кГц (50%) и наблюдали за выходным сигналом на осциллографе.
Канал осциллографа 1 (желтый) на PWM1, а канал осциллографа 2 (синий) – на базу Q1 (то есть первый вывод импульсного выхода микроконтроллера).
Возвращаясь к двухканальным сигналам ШИМ заметим, что такое дело будет полезно во многих случаях, таких как управление шаговыми двигателями, управление бесколлекторными двигателями постоянного тока, преобразование постоянного напряжения. Поскольку модуль XY-PWM можно использовать для генерации двух сигналов ШИМ с одинаковой (но переменной) частотой и рабочим циклом, результирующие прямоугольные волны с двухфазным смещением могут сыграть важную роль в чередующихся / фазосдвинутых сигналов.
Согласно описанию, двухканальный ШИМ-модуль даже совместим с серией промышленных двухфазных гибридных шаговых сервоприводов RMCS-111x.
Кстати, разъем встроенного 4-контактного интерфейса напоминает знакомый интерфейс программатора SWIM для микроконтроллеров STM. Чаще всего STM8S003K составляет основу такого двухканального модуля ШИМ.
Другое испытание проводилось с небольшим вентилятором BLDC на 12 В / 100 мА, просто подключили его к каналу PWM1 (25 кГц) двойного модуля PWM (с питанием от БП) через один модуль МОП IRF530 (не логика), как показано на схеме подключения. Использовали обычный метод «фиксированной частоты и переменного рабочего цикла» для управления скоростью вентилятора, и установка показала отличную производительность.
Вот выходной сигнал ШИМ 20 кГц (50%) (x2), обработанный двухканальным модулем ШИМ и снятый USB-осциллографом.
Выходное напряжение ШИМ модуля находится на уровне 5 В, потому что транзисторы драйвера питаются от встроенного стабилизатора напряжения 5 В / 30 мА LDO. И простое вырезание одной дорожки сделает ее готовой к выходам ШИМ более высокого уровня.
После этого можно подать более высокое напряжение между контактными площадками V + и GND. Если это вход 12 В, то получим выходы ШИМ с уровнем 12 В, но убедитесь что есть 100% изоляция между V + и дорожкой 5 В, иначе схема может сгореть. В общем подобный блок прекрасная основа более сложных приборов и электрических исполнительных механизмов.
ОПИСАНИЕ
Высокий точный частотный измеритель ШИМ XY-PWM с ЖК-отображением частотного генератора Генератора панели модуля Поддержка TTL Выход
BRT XY-PWM
Основные особенности
-Lcd экран с задним светом, четко отображать частотный сигнал
-Pmw выходной сигнал и коэффициент обязанности (0%-100%) регулируются.
-высокая точность, широкий диапазон частот: от 1 Гц до 150 кГц.
-С может быть установлен на 4 типа частотных диапазонов: 1 Гц ~ 999 Гц, 1,00 кГц ~ 9,99 кГц, 10,0 кГц ~ 99,9 кГц, 1 кГц ~ 150 кГц
-Поразируя связь порта TTL для SCM или микропроцессора.
Технические параметры
Описание функции
Цепь проводки
Шаг -генератор сигналов PWM -генератора PWM -частотный счетчик, включая:
1 Лот X ШИМ-частотный счетчик XY-PWM (2 единицы)
1 SE x Профессиональное удобное для понимания руководство пользователя
Удовлетворенность клиента
Пожалуйста, не стесняйтесь обращаться к нам, если у вас есть какие -либо вопросы или проблемы до или после покупки. Мы привержены вашему 100% удовлетворенности.
Оплата
На dhgate.com доступно много методов оплаты, таких как кредитные карты, банковские переводы в реальном времени, офлайн-платежи (банковские переводы). Вы можете выбрать метод, который наиболее удобен для вас. Чтобы защитить ваши интересы, ваш платеж будет временно проведен DHGATE, и не будет выпущен нам, пока вы не получите свой заказ и не будут удовлетворены им.
Перевозки
1. Стоимость пособия:
Сначала выберите количество, затем нажмите на страну с помощью логистических методов на странице.
2. Проведите следующую страницу, вы можете увидеть детальную стоимость доставки по каждым логистическим методам при выборе.
3. Время обработки элементов: время обработки для определенного порядка варьируется в зависимости от типа продукта и статуса запаса. В основном время обработки может составлять от 3 до 15 рабочих дней.
Политика возврата
Если вы хотите обменять полученные товары, вы должны связаться с нами в течение 3 дней после получения вашего заказа. И вы должны заплатить дополнительные сборы за доставку, и возвращенные товары должны храниться в их первоначальном статусе.
Обратная связь
Поскольку ваши отзывы очень важны для развития нашего бизнеса, мы искренне приглашаем вас оставить для нас положительные отзывы, если вы удовлетворены нашим продуктом и услугой. Это просто займет 1 минуту. Спасибо!
ШИМ или PWM (широтно-импульсная модуляция, по-английски pulse-width modulation) – это способ управления подачей мощности к нагрузке. Управление заключается в изменении длительности импульса при постоянной частоте следования импульсов. Широтно-импульсная модуляция бывает аналоговой, цифровой, двоичной и троичной.
Применение широтно-импульсной модуляции позволяет повысить КПД электрических преобразователей, особенно это касается импульсных преобразователей, составляющих сегодня основу вторичных источников питания различных электронных аппаратов. Обратноходовые и прямоходовые однотактные, двухтактные и полумостовые, а также мостовые импульсные преобразователи управляются сегодня с участием ШИМ, касается это и резонансных преобразователей.
Широтно-импульсная модуляция позволяет регулировать яркость подсветки жидкокристаллических дисплеев сотовых телефонов, смартфонов, ноутбуков. ШИМ реализована в , в автомобильных инверторах, в зарядных устройствах и т. д. Любое зарядное устройство сегодня использует при своей работе ШИМ.
В качестве коммутационных элементов, в современных высокочастотных преобразователях, применяются биполярные и полевые транзисторы, работающие в ключевом режиме. Это значит, что часть периода транзистор полностью открыт, а часть периода — полностью закрыт.
И так как в переходных состояниях, длящихся лишь десятки наносекунд, выделяемая на ключе мощность мала, по сравнению с коммутируемой мощностью, то средняя мощность, выделяемая в виде тепла на ключе, в итоге оказывается незначительной. При этом в замкнутом состоянии сопротивление транзистора как ключа очень невелико, и падение на нем напряжения приближается к нулю.
В разомкнутом же состоянии проводимость транзистора близка к нулю, и ток через него практически не течет. Это позволяет создавать компактные преобразователи с высокой эффективностью, то есть с небольшими тепловыми потерями. А резонансные преобразователи с переключением в нуле тока ZCS (zero-current-switching) позволяют свести эти потери к минимуму.
В ШИМ-генераторах аналогового типа, управляющий сигнал формируется аналоговым компаратором, когда на инвертирующий вход компаратора, например, подается треугольный или пилообразный сигнал, а на неинвертирующий — модулирующий непрерывный сигнал.
Выходные импульсы получаются , частота их следования равна частоте пилы (или сигнала треугольной формы), а длительность положительной части импульса связана с временем, в течение которого уровень модулирующего постоянного сигнала, подаваемого на неинвертирующий вход компаратора, оказывается выше уровня сигнала пилы, который подается на инвертирующий вход. Когда напряжение пилы выше модулирующего сигнала — на выходе будет отрицательная часть импульса.
Если же пила подается на неинвертирующий вход компаратора, а модулирующий сигнал — на инвертирующий, то выходные импульсы прямоугольной формы будут иметь положительное значение тогда, когда напряжение пилы выше значения модулирующего сигнала, поданного на инвертирующий вход, а отрицательное — когда напряжение пилы ниже сигнала модулирующего. Пример аналогового формирования ШИМ — микросхема TL494, широко применяющаяся сегодня при построении импульсных блоков питания.
Цифровая ШИМ используются в двоичной цифровой технике. Выходные импульсы также принимают только одно из двух значений (включено или выключено), и средний уровень на выходе приближается к желаемому. Здесь пилообразный сигнал получается благодаря использованию N-битного счетчика.
Цифровые устройства с ШИМ работают также на постоянной частоте, обязательно превосходящей время реакции управляемого устройства, этот подход называется передискретизацией. Между фронтами тактовых импульсов, выход цифрового ШИМ остается стабильным, или на высоком, или на низком уровне, в зависимости от текущего состояния выхода цифрового компаратора, который сравнивает уровни сигналов на счетчике и приближаемый цифровой.
Выход тактуется как последовательность импульсов с состояниями 1 и 0, каждый такт состояние может сменяться или не сменяться на противоположное. Частота импульсов пропорциональна уровню приближаемого сигнала, а единицы, следующие друг за другом могут сформировать один более широкий, более продолжительный импульс.
Получаемые импульсы переменной ширины будут кратны периоду тактования, а частота будет равна 1/2NT, где T – период тактования, N – количество тактов. Здесь достижима более низкая частота по отношению к частоте тактования. Описанная схема цифровой генерации — это однобитная или двухуровневая ШИМ, импульсно-кодированная модуляция ИКМ.
Эта двухуровневая импульсно-кодированная модуляция представляет собой по сути серию импульсов с частотой 1/T, и шириной Т или 0. Для усреднения за больший промежуток времени применяется передискретизация. Высокого качества ШИМ позволяет достичь однобитная импульсно-плотностная модуляция (pulse-density-modulation), называемая также импульсно-частотной модуляцией.
При цифровой широтно-импульсной модуляции прямоугольные подимпульсы, которыми оказывается заполнен период, могут приходиться на любое место в периоде, и тогда на среднем за период значении сигнала сказывается только их количество. Так, если разделить период на 8 частей, то комбинации импульсов 11001100, 11110000, 11000101, 10101010 и т. д. дадут одинаковое среднее значение за период, тем не менее, отдельно стоящие единицы утяжеляют режим работы ключевого транзистора.
Корифеи электроники, повествуя о ШИМ, приводят такую аналогию с механикой. Если при помощи двигателя вращать тяжелый маховик, то поскольку двигатель может быть либо включен, либо выключен, то и маховик будет либо раскручиваться и продолжать вращаться, либо станет останавливаться из-за трения, когда двигатель выключен.
Но если двигатель включать на несколько секунд в минуту, то вращение маховика будет поддерживаться, благодаря инерции, на некоторой скорости. И чем дольше продолжительность включения двигателя, тем до более высокой скорости раскрутится маховик. Так и с ШИМ, на выход приходит сигнал включений и выключений (0 и 1), и в результате достигается среднее значение. Проинтегрировав напряжение импульсов по времени, получим площадь под импульсами, и эффект на рабочем органе будет тождественен работе при среднем значении напряжения.
Так работают преобразователи, где переключения происходят тысячи раз в секунду, и частоты достигают единиц мегагерц. Широко распространены специальные ШИМ-контроллеры, служащие для управления балластами энергосберегающих ламп, блоками питания, и т. д.
Отношение полной длительности периода импульса ко времени включения (положительной части импульса) называется скважностью импульса. Так, если время включения составляет 10 мкс, а период длится 100 мкс, то при частоте в 10 кГц, скважность будет равна 10, и пишут, что S = 10. Величина обратная скважности называется коэффициентом заполнения импульса, по-английски Duty cycle, или сокращенно DC.
Так, для приведенного примера DC = 0.1, поскольку 10/100 = 0.1. При широтно-импульсной модуляции, регулируя скважность импульса, то есть варьируя DC, добиваются требуемого среднего значения на выходе электронного или другого электротехнического устройства, например двигателя.
Широтно-импульсно модулированный сигнал очень часто применяется в электронике для передачи информации, регулировки мощности или формирования постоянного напряжения произвольного уровня. В этой статье описано устройство на операционном усилителе, размером 20х20мм из 15 элементов, которое генерирует ШИМ-сигнал.
ШИМ-сигнал (PWM) представляет собой последовательность импульсов, частота которых неизменна, а модулируется длительность импульсов. Большинство микроконтроллеров легко справляются с этой задачей, но что делать если нет желания программировать и использовать такое мощное средство для такой простой задачи? В этом случае можно использовать дискретные элементы.
Для начала необходимо сформировать последовательность пилообразных импульсов и подать ее на вход компаратора. На второй вход компаратора подается модулирующий сигнал, например, напряжение с переменного резистора. Если напряжение генератора выше напряжения на втором входе — на выходе напряжение близко к напряжению питания. Если напряжение генератора ниже — на выходе ноль.
На рисунке Uк — напряжение команды (постоянный уровень, заданный переменным резистором), Uген — напряжение генератора, UPWM — ШИМ-сигнал.
Схема
Все эти задачи можно легко выполнить при помощи двух операционных усилителей так как показано на схеме.
В схеме применена микросхема LM358N, которая использует однополярное питание и содержит два канала в одном корпусе SO8.
Печатная плата
Все элементы, кроме резистора R3, предназначены для поверхностного монтажа и располагаются на плате с минимальным размером. R3 расположен на обратной стороне платы. Генераторные схемы очень капризны с точки зрения трассировки печатных плат. Если изменить топологию платы нельзя гарантировать ее работоспособность. Первая версия платы генерировала пилообразное напряжение с очень низкой амплитудой и ее было невозможно использовать.
Сборка и работа схемы
Сама плата очень маленькая — 20х20 мм и легко изготавливается методом ЛУТ. Она лишь немного больше переменного резистора, изменяющего скважность сигнала.
Технические характеристики
- напряжение питания, 5-15В
- диапазон изменения скважности, от 1 до бесконечности
- рабочая частота, 500Гц
- потребляемый ток, не более, 2мА
Рабочая частота определяется конденсатором C1. Для снижения частоты можно увеличить его емкость и наоборот.
Список элементов
- ИМС LM358N в корпусе SO8 (DA1), 1 шт.
- Резисторы 20кОм в корпусе 0805 (R1,R2,R4-R6), 5 шт.
- Резисторы 10кОм в корпусе 0805 (R7,R8), 2 шт.
- Любой переменный резистор с шагом выводов 5мм и сопротивлением 50кОм
- Конденсаторы 0,1мкФ в корпусе 0805 (C1,C2,C4), 3шт.
- Конденсатор танталовый 47мкФ, 16В, типоразмера С, T491C476K016AT (C3), 1шт.
Видео работы
Работает плата достаточно стабильно. На видео видно, как меняется яркость светодиода. Неудобство только в том, что используется лишь половина диапазона резистора R3. То есть в первой и последней четверти положения вала напряжение остается без изменения.
Светодиоды используются практически во всех технике вокруг нас. Правда иногда возникает необходимость регулировать их яркость (например, в фонариках, или мониторах). Самым простым выходом в этой ситуации, кажется изменить количество тока, пропускаемого через светодиод. Но это не так. Светодиод – довольно чувствительный компонент. Постоянное изменение количества тока может существенно сократить срок его работы, или вообще сломать. Так же надо учитывать, что нельзя использовать ограничительный резистор, так как в нем будет накапливаться лишняя энергия. При использовании батареек это недопустимо. Еще одна проблема при таком подходе – цвет света будет меняться.
Есть два варианта:
- Регулирование ШИМ
- Аналоговое
Эти методы контролируют проходящий через светодиод ток, но между ними есть определенные различия.
Аналоговое регулирование изменяет уровень тока, который проходит через светодиоды. А ШИМ регулирует частоту подачи тока.
ШИМ-регулирование
Выходом из этой ситуации может быть использование широтно-импульсной модуляции (ШИМ). При такой системе светодиоды получают необходимый ток, а яркость регулируется с помощью подачи питания с высокой частотой. То есть, частота периода подачи изменяет яркость светодиодов.
Несомненный плюс ШИМ-системы – сохранение продуктивности светодиода. КПД составит около 90%.
Виды ШИМ-регулирования
- Двухпроводная. Часто используется в системе освещения машин. Источник питания преобразователя должен иметь схему, которая формирует сигнал ШИМ на DC-выходе.
- Шунтирующее устройство. Чтобы сделать период включении/выключения преобразователя используют шунтирующий компонент, который обеспечивает путь для выходного тока помимо светодиода.
Параметры импульсов при ШИМ
Частота следования импульсов не меняется, поэтому никаких требований в определении яркости света к ней нет. В данном случае, меняется только ширина, или время положительного импульса.
Частота импульсов
Даже с учетом того, что особых претензий к частоте нет, существуют граничные показатели. Они определяются чувствительностью глаза человека к мельканиям. Например, если в кино мелькания кадров должны составлять 24 кадра в секунду, чтобы наш глаз воспринимал его как одно движущееся изображение.
Чтобы мелькания света воспринимались как равномерный свет, частота должна составлять не меньше 200Гц. По верхним показателям ограничений нет, но ниже никак нельзя.
Как работает регулятор ШИМ
Для непосредственного управления светодиодами применяется транзисторный ключевой каскад. Обычно для них используют транзисторы, способные накапливать большие объемы мощности.
Это необходимо при использовании светодиодных лент или мощных светодиодах.
Для небольшого количества или невысокой мощности вполне достаточно использования биполярных транзисторов. Так же можно подключать светодиоды прямо к микросхемам.
Генераторы ШИМ
В системе ШИМ в качестве задающего генератора могут использовать микроконтроллер, или схема, состоящая из схем малой степени интеграции.
Так же возможно создание регулятора из микросхем, которые предназначены для импульсных блоков питания, или логические микросхемы К561, или интегральный таймер NE565.
Умельцы используют в этих целях даже операционный усилитель. Для этого на нем собирается генератор, который можно регулировать.
Одна из наиболее используемых схем основана на таймере 555. По сути, это обычный генератор прямоугольных импульсов. Частота регулируется конденсатором С1. при выходе у конденсатора должно быть высокое напряжение (это равно с соединением с плюсовым источником питания). А заряжается он тогда, когда на выходе присутствует низкое напряжение. Этот момент и дает получение импульсов разной ширины.
Еще одной популярной схемой является ШИМ на основе микросхемы UC3843. в этом случае схема включения изменена в сторону упрощения. Для того, чтобы управлять шириной импульса, используется подача регулирующего напряжения положительной полярности. На выходе в таком случае получается нужный импульсный сигнал ШИМ.
Регулирующее напряжение действует на выход так: при снижении широта увеличивается.
Почему ШИМ?
- Главное преимущество этой системы – легкость. Схемы использования очень просты и легки в реализации.
- Система ШИМ – регулирования дает очень широкий диапазон регулировки яркости. Если говорить о мониторах, то возможно применение CCFL-подсветки, но в таком случае яркость можно уменьшить только в два раза, так как CCFL-подсветка очень требовательна к количеству тока и напряжению.
- Используя ШИМ можно удерживать ток на постоянном уровне, а значит светодиоды не пострадают и цветовая температура меняться не будет.
Недостатки использования ШИМ
- Со временем мерцание изображение может быть довольно заметно, особенно при низкой яркости или движении глаз.
- При постоянном ярком освещении (например, свете солнца) изображение может расплываться.
Принцип ШИМ – широтно-импульсная модуляция заключается в изменении ширины импульса при постоянстве частоты следования импульса. Амплитуда импульсов при этом неизменна.
Широтно-импульсное регулирование находит применение там, где требуется регулировать подаваемую к нагрузке мощность. Например, в схемах управления электродвигателями постоянного тока, в импульсных преобразователях, для регулирования яркости светодиодных светильников, экранов ЖК-мониторов, дисплеев в смартфонах и планшетах и т.п.
Большинство вторичных источников питания электронных устройств в настоящее время строятся на основе импульсных преобразователей, применяется широтно-импульсная модуляция и в усилителях низкой (звуковой) частоты класса D, сварочных аппаратах, устройствах зарядки автомобильных аккумуляторов, инверторах и пр. ШИМ позволяет повысить коэффициент полезного действия (КПД) вторичных источников питания в сравнении с низким КПД аналоговых устройств.
Широтно-импульсная модуляция бывает аналоговой и цифровой.
Аналоговая широтно-импульсная модуляция
Как уже упоминалось выше, частота сигнала и его амплитуда при ШИМ всегда постоянны. Один из важнейших параметров сигнала ШИМ – это коэффициент заполнения, равный отношению длительности импульса t
к периоду импульса T
. D = t/T
. Так, если имеем сигнал ШИМ с длительностью импульса 300 мкс и периодом импульса 1000 мкс, коэффициент заполнения составит 300/1000 = 0,3. Коэффициент заполнения также выражается в процентах, для чего коэффициент заполнения умножается на 100%. По примеру выше процентный коэффициент заполнения составляет 0,3 х 100% = 30%.
Скважность импульса – это отношение периода импульсов к их длительности, т.е. величина, обратная коэффициенту заполнения. S = T/t
.
Частота сигнала определяется как величина, обратная периоду импульса, и представляет собой количество полных импульсов за 1 секунду. Для примера выше при периоде 1000 мкс = 0,001 с, частота составляет F
= 1/0,001 – 1000 (Гц).
Смысл ШИМ заключается в регулировании среднего значения напряжения путем изменения коэффициента заполнения. Среднее значение напряжения равно произведению коэффициента заполнения и амплитуды напряжения. Так, при коэффициенте заполнения 0,3 и амплитуде напряжения 12 В среднее значение напряжения составит 0,3 х 12 = 3,6 (В). При изменении коэффициента заполнения в теоретически возможных пределах от 0% до 100% напряжение будет изменяться от 0 до 12 В, т.е. Широтно-импульсная модуляция позволяет регулировать напряжение в пределах от 0 до амплитуды сигнала. Что и используется для регулирования скорости вращения электродвигателя постоянного тока или яркости свечения светильника.
Сигнал ШИМ формируется микроконтроллером или аналоговой схемой. Этот сигнал обычно управляет мощной нагрузкой, подключаемой к источнику питания через ключевую схему на биполярном или полевом транзисторе. В ключевом режиме полупроводниковый прибор либо разомкнут, либо замкнут, промежуточное состояние исключается. В обоих случаях на ключе рассеивается ничтожная тепловая мощность. Поскольку эта мощность равна произведению тока через ключ на падение напряжения на нем, а в первом случае к нулю близок ток через ключ, а во втором напряжение.
В переходных состояниях на ключе присутствует значительное напряжение с прохождением значительного тока, т.е. значительна и рассеиваемая тепловая мощность. Поэтому в качестве ключа необходимо применение малоинерционных полупроводниковых приборов с быстрым временем переключения, порядка десятков наносекунд.
Если ключевая схема управляет светодиодом, то при малой частоте сигнала светодиод будет мигать в такт с изменением напряжения сигнала ШИМ. При частоте сигнала выше 50 Гц мигания сливаются вследствие инерции человеческого зрения. Общая яркость свечения светодиода начинает зависеть от коэффициента заполнения – чем ниже коэффициент заполнения, тем слабее светится светодиод.
При управлении посредством ШИМ скорости вращения двигателя постоянного тока частота ШИМ должна быть очень высокой, и лежать за пределами слышимых звуковых частот, т.е. превышать 15-20 кГц, в противном случае двигатель будет «звучать», издавая раздражающий слух писк с частотой ШИМ. От частоты зависит и стабильность работы двигателя. Низкочастотный сигнал ШИМ с невысоким коэффициентом заполнения приведет к нестабильной работе двигателя и даже возможной его остановке.
Тем самым, при управлении двигателем желательно повышать частоту сигнала ШИМ, но и здесь существует предел, определяемый инерционными свойствами полупроводникового ключа. Если ключ будет переключаться с запаздываниями, схема управления начнет работать с ошибками. Чтобы избежать потерь энергии и добиться высокого коэффициента полезного действия импульсного преобразователя, полупроводниковый ключ должен обладать высоким быстродействием и низким сопротивлением проводимости.
Сигнал с выхода ШИМ можно также усреднять посредством простейшего фильтра низких частот. Иногда можно обойтись и без этого, поскольку обладает определенной электрической индуктивностью и механической инерцией. Сглаживание сигналов ШИМ происходит естественным путем в том случае, когда частота ШИМ превосходит время реакции регулируемого устройства.
Реализовать ШИМ можно посредством с двумя входами, на один из которых подается периодический пилообразный или треугольный сигнал от вспомогательного генератора, а на другой модулирующий сигнал управления. Длительность положительной части импульса ШИМ определяется временем, в течение которого уровень управляющего сигнала, подаваемого на один вход компаратора, превышает уровень сигнала вспомогательного генератора, подаваемого на другой вход компаратора.
При напряжении вспомогательного генератора выше напряжения управляющего сигнала на выходе компаратора будет отрицательная часть импульса.
Коэффициент заполнения периодических прямоугольных сигналов на выходе компаратора, а тем самым и среднее напряжение регулятора, зависит от уровня модулирующего сигнала, а частота определяется частотой сигнала вспомогательного генератора.
Цифровая широтно-импульсная модуляция
Существует разновидность ШИМ, называемая цифровой ШИМ. В этом случае период сигнала заполняется прямоугольными подымпульсами, и регулируется уже количество подымпульсов в периоде, что и определяет среднюю величину сигнала за период.
В цифровой ШИМ заполняющие период подымпульсы (или «единички») могут стоять в любом месте периода. Среднее значение напряжения за период определяется только их количеством, при этом подымпульсы могут следовать один за другим и сливаться. Отдельно стоящие подымпульсы приводят к ужесточению режима работы ключа.
В качестве источника сигнала цифровой ШИМ можно использовать COM-порт компьютера с 10-битовым сигналом на выходе. С учетом 8 информационных битов и 2 битов старт/стоп, в сигнале COM-порта присутствует от 1 до 9 «единичек», что позволяет регулировать напряжение в пределах 10-90% напряжения питания с шагом в 10%.
При работе с множеством различных технологий часто стоит вопрос: как управлять мощностью, которая доступна? Что делать, если её необходимо понизить или повысить? Ответом на эти вопросы служит ШИМ-регулятор. Что он собой представляет? Где применяется? И как самому собрать такой прибор?
Что такое широтно-импульсная модуляция?
Без выяснения значения этого термина продолжать не имеет смысла. Итак, широтно-импульсная модуляция — это процесс управления мощностью, которая подводится к нагрузке, осуществляемая путём видоизменения скважности импульсов, которая делается при постоянной частоте. Существует несколько типов широтно-импульсной модуляции:
1. Аналоговый.
2. Цифровой.
3. Двоичный (двухуровневый).
4. Троичный (трехуровневый).
Что такое ШИМ-регулятор?
Теперь, когда мы знаем, что такое широтно-импульсная модуляция, можно поговорить и о главной теме статьи. Используется ШИМ-регулятор для того, чтобы регулировать напряжение питания и для недопущения мощных инерционных нагрузок в авто- и мототехнике. Это может звучать слишком сложно и лучше всего пояснить на примере. Допустим, необходимо сделать, чтобы лампы освещения салона меняли свою яркость не сразу, а постепенно. Это же относится к габаритным огням, автомобильным фарам или вентиляторам. Воплотить такое желание можно путём установки транзисторного регулятора напряжения (параметрический или компенсационный). Но при большом токе на нём будет выделяться чрезвычайно большая мощность и потребуется установка дополнительных больших радиаторов или дополнение в виде системы принудительного охлаждения с использованием маленького вентилятора, снятого с компьютерного устройства. Как видите, данный путь влечёт за собой много последствий, которые необходимо будет преодолеть.
Настоящим спасением из данной ситуации стал ШИМ-регулятор, который работает на мощных полевых силовых транзисторах. Они могут коммутировать большие токи (которые достигают 160 Ампер) при напряжении всего в 12-15В на затворе. Следует отметить, что сопротивление у открытого транзистора довольное мало, и благодаря этому можно заметно снизить уровень рассеиваемой мощности. Чтобы создать свой собственный ШИМ-регулятор, понадобится схема управления, которая сможет обеспечить разность напряжения между истоком и затвором в границах 12-15В. Если этого не получится достичь, то сопротивление канала будет сильно увеличиваться и значительно возрастёт рассеиваемая мощность. А это, в свою очередь, может привести к тому, что транзистор перегреется и выйдет из строя.
Выпускается целый ряд микросхем для ШИМ-регуляторов, которые смогут выдержать повышение входного напряжения до уровня 25-30В, при том, что питание будет всего 7-14В. Это позволит включать выходной транзистор в схеме вместе с общим стоком. Это, в свою очередь, необходимо для подключения нагрузки с общим минусом. В качестве примеров можно привести такие образцы: L9610, L9611, U6080B … U6084B. Большинство нагрузок не потребляет ток больше 10 ампер, поэтому они не могут вызвать просадку напряжения. И как результат — использовать можно и простые схемы без доработки в виде дополнительного узла, который будет повышать напряжение. И именно такие образцы ШИМ-регуляторов и будут рассмотрены в статье. Они могут быть построены на основе несимметрического или ждущего мультивибратора. Стоит поговорить про ШИМ-регулятор оборотов двигателя. Об этом далее.
Схема №1
Эта схема ШИМ-регулятора собиралась на инверторах КМОП-микросхемы. Она является генератором прямоугольных импульсов, который действует на 2-х логических элементах. Благодаря диодам здесь отдельно изменяется постоянная времени разряда и заряда частотозадающего конденсатора. Это позволяет менять скважность, которую имеют выходные импульсы, и как результат — значение эффективного напряжения, которое есть на нагрузке. В данной схеме возможно использование любых инвертирующих КМОП-элементов, а также ИЛИ-НЕ и И. В качестве примеров подойдут К176ПУ2, К561ЛН1, К561ЛА7, К561ЛЕ5. Можно использовать и другие виды, но перед этим придётся хорошо подумать о том, как правильно сгруппировать их входы, чтобы они могли выполнять возложенный функционал. Преимущества схемы — доступность и простота элементов. Недостатки — сложность (практически невозможность) доработки и несовершенство относительно изменения диапазона выходного напряжения.
Схема №2
Обладает лучшими характеристиками, нежели первый образец, но сложнее в выполнении. Может регулировать эффективное напряжение на нагрузке в диапазоне 0-12В, до которого изменяется с начального значения 8-12В. Максимальный ток зависит от типа полевого транзистора и может достигать значительных значений. Учитывая, что выходное напряжение является пропорциональным входному управляющему, данную схему можно использовать как часть системы регулирования (для поддержки уровня температуры).
Причины распространения
Чем привлекает автолюбителей ШИМ-регулятор? Следует отметить стремление к увеличению КПД, когда проводится построение вторичных для электронной аппаратуры. Благодаря данному свойству можно данную технологию найти также при изготовлении компьютерных мониторов, дисплеев в телефонах, ноутбуках, планшетах и подобной техники, а не только в автомобилях. Также следует отметить значительную дешевизну, которой отличается данная технология при своём использовании. Также, если решите не покупать, а собирать ШИМ-регулятор собственноручно, то можно сэкономить деньги при усовершенствовании своего собственного автомобиля.
Заключение
Что ж, вы теперь знаете, что собой представляет ШИМ-регулятор мощности, как он работает, и даже можете сами собрать подобные устройства. Поэтому, если есть желание поэкспериментировать с возможностями своего автомобиля, можно сказать по этому поводу только одно — делайте. Причем можете не просто воспользоваться представленными здесь схемами, но и существенно доработать их при наличии соответствующих знаний и опыта. Но даже если всё не получится с первого раза, то вы сможете получить очень ценную вещь — опыт. Кто знает, где он может в следующий раз пригодиться и насколько важным будет его наличие.
-
Robotics
-
Written by
Ali Akbar Hosseini
Table of Contents
Introduction
You must have come across the terms “square pulse generation” and “pulse width modulation” (or PWM), and you probably have worked with them—for example, which pins of Arduino (or any other microcontroller) can generate PWM pulses. Pulse width modulation is a technique for generating square pulse signals with desired features, which are widely used in different areas of Electronics. Some of these applications include controlling the color and brightness of LEDs, controlling engines and timers, and synchronizing digital systems. This technique is also used in almost all switching power supplies and other methods for controlling the voltage or power.
Due to the importance of this concept, first, we will briefly explain it.
What is PWM?
PWM (or Pulse Width Modulation) is a process through which we control and adjust the parameters of a square waveform. The most important parameters include frequency, duty cycle, and voltage amplitude.
Consider the figure below:
Here are the main parameters of a square waveform:
Period: The time taken for one cycle of the waveform. Its symbol is T, with a unit of “second.”
Frequency: The inverse of period. In other words, frequency is the number of periods per second. Its symbol is “f,” with a unit of Hz (1Hz=1/1s).
Duty Cycle: The ratio of on-time to the period. And it is usually represented in a percentage.
Amplitude: voltage amplitude.
Example: We have a voltage waveform that is on for 1.2 seconds and off for 0.8 seconds. And this process is repeated every 2 seconds. Find the frequency and duty cycle of the waveform.
Simple, isn’t it? Since the process is repeated every 2 seconds, the period would be 2 seconds.
Frequency = 1/2 = 0.5 Hz.
Duty Cycle:
In this tutorial, we will not provide a complete explanation of the PWM concept and the related methods and applications. Therefore, the introduction above is necessary and perhaps enough for our purposes. You can refer to the numerous articles about this topic if you need more information.
Various modules and components have been designed and manufactured to generate PWM signals with different methods. In this tutorial, we will learn how to use the XY-LPWM module, which is almost a complete and well-equipped component for our purpose.
XY-LPWM PWM Signal Generator Module Features
XY-LPWM is a square pulse generator module that has more features compared to many other modules in this family. The output frequency of the module ranges from 0 Hz to 150 KHz, and you can adjust the duty cycle from 0 to 100%. In addition, the accuracy of the output frequency is 2% which is considered a great accuracy for many applications.
It is very easy to work with the XY-LPWM module due to the one LCD and four push buttons to adjust the frequency and duty cycle independently. In addition, the TTL serial user interface is designed on the module, by which we can communicate with the module through the serial port of a computer.
The input voltage is between 3.3 to 30 DC volts. The voltage amplitude of the output pulse is also generated without any drop compared to the input voltage amplitude.
XY-LPWM Specifications
• Input voltage: 3.3 to 30 volts
• Current consumption of module: 20mA (at 5V power supply)
• Output voltage amplitude: equals to the input voltage amplitude
• Frequency: 0 Hz to 150 KHz
• Frequency Accuracy: around 2%
• Duty cycle: 0 to 100%
• Maximum output current: 30 mA
• Operating temperature: -20 to 70 °C
• An LCD screen to display the frequency and duty cycle of the generated wave
• TTL Serial Interface with a 3.3V logic level
• Dimensions: 52*32*10 mm
XY-LPWM Pinout
• VIN+: power supply of module (input voltage)
• GND: ground
• VIN-: ground
• PWM: output pin of pulse
Serial communication pins:
• TXD: transmit data pin
• RXD: receive data pin
Required Materials
Hardware Components
PWM Signal Generator Module with a Digital Display | × | 1 | |
PWM Switch Module* | × | 1 | |
12V Fan** | × | 1 | |
Jumper Wire | × | 1 | |
5 to 12V Power Supply | × | 1 |
*: We use PWM Switch Module to increase the module’s output power. And there are many similar items for it in the market. Of course, you don’t need to buy this module if you are looking for a low-power output.
**: The 12V fan also tests and simulates the engine speed control. You don’t need this component for other purposes.
How to Use XY-LPWM Digital Pulse Generator Module
Module’s Power Supply
You should use this module within a voltage range of 3 to 30 volts which are supplied by the VIN+ pins. The two VIN+ pins are internally connected, so all you have to do is connect one to the power supply’s positive pin. The same applies to the VIN- pins connected to the circuit GND.
The power input of the module is protected by a Schottky diode against high voltages. In addition, the logic circuit of the module works with a voltage level of 3.3 which is provided by a 3.3V regulator on the board.
Note
Unlike many pulse generator modules, the module’s output voltage has no drop compared to the input voltage. Therefore, the output voltage amplitude equals the input voltage amplitude.
When the output voltage goes below 4V, the screen backlight decreases. The module, however, functions properly even at voltages as low as 3V.
The module draws 20mA from the power supply at operating voltages lower than or equal to 5V. In other words, the power consumption at an operating voltage of 5V is about 0.1 w.
Warning
The power mentioned above is the module’s operating power which is not the same as the module’s output power. In addition, the power supply must be able to support both of them.
For example, at an operating voltage of 5V, the maximum total power consumption is equal to the sum of the following powers:
Module’s power consumption= operating voltage * module’s current consumption= 20mA * 5V = 0.1 w,
Output power = output voltage * output current = 30mA * 5V = 0.15 w.
The power supply, therefore, must provide at least 0.25 w of power, i.e. it must provide at least 50mA at an operating voltage of 5V.
Initial Test of XY-LPWM PWM Signal Generator Module
For a simple test on XY-LPWM module, connect the wires as shown below. The power supply voltage must be between 3.3 to 30 volts.
You can see the general screen format in the image above. The first line is the output pulse frequency, and the second line shows the duty cycle percentage of the output pulse signal.
Warning
In some models of XY-LPWM modules, the output duty cycle percentage is complementary to the duty cycle displayed on the screen. For example, if it shows 60%, the output duty cycle is in fact 40%. In practice, though, this won’t be a problem because you can adjust its complementary to have the desired duty cycle.
You can observe the module output with an oscilloscope to make sure that you’ve got the desired output frequency and duty cycle.
The waveform frequency on the oscilloscope must be equal to the frequency shown on the module screen.
Solution for Output Current Limitation in XY-LPWM Pulse Generator Module
As mentioned, the maximum output current of the XY-LPWM module is 30mA. This current will work perfectly well when using logic circuits because they don’t need a lot of current. But 30mA won’t be nearly enough when running a device such as a DC motor. For such cases, we have to amplify the output current.
One way to increase the output current and power is to use switching circuits. In this method, we use the output signal of the XY-LPWM module as the excitation signal for the switching circuits. Therefore, we can use the switching circuit output to run high-power devices.
There are colorful switching circuits, and most of them are designed based on transistors. Using these circuits, we can run and control an actuator such as a motor (which has a high amount of voltage and current) by a weak excitation signal (which has a low amount of voltage and current). We can get the excitation signal from a microcontroller or any other circuit, such as the XY-LPWM module.
First, let’s briefly explain one type of switching circuit that has a MOSFET transistor.
MOSFET as Switch
The circuit below shows the general form of using a MOSFET in a switching circuit.
In the above circuit, as the input voltage (VIN) goes up, so does the voltage of the transistor’s gate pin (G). This will activate the transistor, which means, now, there is a connection between the drain pin (D) and the source pin (S), and the current can flow from VDD to GND. As a result, we can turn on a light (or any consumer) in the circuit.
To provide the required excitation signal for the transistor, we should connect the VIN pin to a microcontroller or a circuit. By doing so, the current consumed by the consumer will no longer pass through the VIN pin. In addition, the VDD value, which works as the power supply for the consumer, can be much higher than the excitation voltage. (The voltage and current of “Drain-Source” and “excitation signal” are different in various transistors. So if you need the exact specs of each specific model, you should see their datasheet.)
For example, let’s control a 12V motor with Arduino. Since the voltage of Arduino pins is 5V and their current can be 30mA at most, we can’t connect the Arduino pins, as an output, directly to the motor pin. Solution: The above switching circuit. All you have to do is connect the Arduino’s output pin to VIN, and VDD to the 12V power supply and then replace the light with a motor. In this case, we can activate the power supply circuit of the 12V motor with the Arduino’s 5V signal. Now, we control the speed of a DC motor with a power-switching module.
In this example, we use the HW-517 MOSFET Switching Module as the switching circuit. This module has two AOD4184A Power MOSFETs in parallel, which can provide 15A. In addition, the excitation voltage of the HW-517 module is between 3.3 to 20V, and the output voltage can range from 5 to 36V.
Motor Speed Control by XY-LWPM Pulse Generator Module and MOSFET Switch
Wiring
In the above circuit, the output of the XY-LPWM module is given to the switching module as the excitation signal. The MOSFETs are switched on and off with the same frequency and duty cycle as the excitation signal. As a result, the connection between the fan and the power supply on the right side is switched on and off. This way, we can control the average voltage given to the fan by controlling the frequency and duty cycle. In addition, the DC motor speed is proportional to the average voltage.
Tip
Since the excitation voltage of the MOSFET module is between 3.3 to 20 volts, the output voltage of the pulse generator must also be within the same range. Therefore, the voltage of the pulse generator’s power supply must range from 3.3 to 20 volts.
The power supply on the right side should have a voltage value between 5 to 36 volts; its exact value is determined by the consumer’s operating voltage (here, the fan). Also, we should choose the power supply current according to the actuator current.
If the actuator voltage is between 5 to 20 volts, we can use a typical power supply as long as it can provide the required total current.
We can also use the above circuit to control the color and brightness of RGB LEDs.
XY-LPWM Pulse Generator Module Configuration
Frequency Settings
You can adjust the module frequency from 0 Hz to 150 KHz. To do that, simply press the buttons related to frequency adjustment—the “+” button for increasing the frequency and the “-“ button for decreasing it. Remember that the frequency changes more quickly if you press and hold the buttons.
When you are changing the frequency, the word “OUT” disappears, and then the word “SET” appears on the screen. The value related to the frequency also changes on the screen (in the first line).
Here are the formats to display the frequency value:
XXX: In this format, the value is the output frequency represented in Hz. And it ranges from 0 to 999Hz. For example, when you see “300” on the screen, it means 300Hz.
X.XX: The value is represented in “KHz,” and it ranges from 1KHz to 9.99KHz. For example, when you see “1.00” on the screen, it means 1KHz. In addition, whenever you press the related buttons, the frequency changes by 10Hz.
XX.X: The value is represented in tens of KHz, and it ranges from 10.0KHz to 99.9KHz. For example, when you see “10.0” on the screen, it means 10KHz. In addition, whenever you press the related buttons, the frequency changes by 100Hz.
X.X.X: The value is represented in hundreds of KHz, and it ranges from 100KHz to 150KHz. For example, when you see “1.0.0” on the screen, it means 100KHz. In addition, whenever you press the related buttons, the frequency changes by 1KHz.
Duty Cycle Settings
The module’s duty cycle ranges from 0 to 100%. To adjust this parameter, you can press the buttons “+” and “-“ shown in the image above. In addition, the three-digit number on the second line of the screen represents this parameter.
Controlling XY-LPWM Pulse Generator Module with Serial Interface
As mentioned, the module has a serial interface port with a 3.3V logic level. We can adjust the frequency features of the generated wave or restore the adjusted features by some specific commands using the serial port.
If you are using a 5V logic-level microcontroller to communicate with the module, make sure to use a voltage-level converter so as not to damage the pulse generator module.
The serial communication baud rate is 9600.
Frequency Settings
To adjust the frequency, send the data—in a similar format as in the display with an “F” prefix—to the module via the serial interface. Look at the examples below:
• F100: Adjusting the frequency to 100Hz
• F1.00: Adjusting the frequency to 1kHz
• F10.0: Adjusting the frequency to 10kHz
• F1.0.0: Adjusting the frequency to 100kHz
If the module understands the message, it will respond with the word “DOWN”. Otherwise, it will show the word “FAIL.”
Duty Cycle Settings
To adjust the duty cycle, send it to the module with a “D” prefix. Here’s an example:
D050: Adjusting the duty cycle to 50%.
Value Reading
You should send the word “read” to the module to read the module settings.
What’s Next?
With three XY-LPWM modules and three switch modules, as in the second example, build an RGB color controller and adjust the color and brightness of an RGB LED String.
Build a digital-to-analog converter using a pulse generator module and an RC circuit.
Using Arduino, write a code that can both receive the values from the serial port of a computer and then apply it to the module.
Get Updates And Learn From The Best
More To Explore
Comments (2)
-
Ajay Shee
Reply
Nicely Explained
August 29, 2023 at 6:55 am
-
Mohammad Damirchi
Reply
you’re welcome
August 30, 2023 at 5:31 am
-